Log in

Effects of dielectric barrier discharge plasma on Bacillus cereus spores inactivation and quality attributes of white peppers

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of dielectric barrier discharge (DBD) plasma on Bacillus cereus spores inactivation and the quality attributes of white peppers. DBD plasma caused inactivation of B. cereus spores inoculated in white peppers in a time-dependent manner. A maximum reduction of 2.77 log10 CFU/g was observed for B. cereus spores following DBD plasma treatment at 30.72 W for 12 min. The samples showed no significant alterations in the color parameters (L*, a*, and b*) after exposure to DBD plasma for 3 to 9 min. However, when the time was extended to 12 min, the values of L*, a*, and whiteness index significantly decreased, while the b* value increased (p < 0.05). Moreover, DBD plasma treatment (30.72 W, 12 min) caused no adverse effects on the hardness, moisture level, bioactive compounds (phenolic compounds, essential oil, and piperine), and antioxidant activity of white peppers. In addition, e-nose results indicated that DBD plasma caused slightly impact on the volatile flavor profile of white peppers. Overall, these results suggest that cold plasma may be a useful technique for inactivating B. cereus in peppers without significant influences on the quality characteristics of final products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Guldiken, G. Ozkan, G. Catalkaya, F.D. Ceylan, I.E. Yalcinkaya, E. Capanoglu, Phytochemicals of herbs and spices: Health versus toxicological effects. Food Chem. Toxicol. 119, 37–49 (2018). https://doi.org/10.1016/j.fct.2018.05.050

    Article  CAS  PubMed  Google Scholar 

  2. T.A. Jiang, Health benefits of culinary herbs and spices. J. AOAC Int. 102, 395–411 (2019). https://doi.org/10.5740/jaoacint.18-0418

    Article  CAS  PubMed  Google Scholar 

  3. K.F.M. Opuni, J.P. Kretchy, K. Agyabeng, J.A. Boadu, T. Adanu, S. Ankamah, A. Appiah, G.B. Amoah, M. Baidoo, I.A. Kretchy, Contamination of herbal medicinal products in low-and-middle-income countries: a systematic review. Heliyon. 9, e19370 (2023). https://doi.org/10.1016/j.heliyon.2023.e19370

    Article  PubMed  PubMed Central  Google Scholar 

  4. S.T. Baghbadorani, E. Rahimi, A. Shakerian, Investigation of virulence and antibiotic-resistance of Bacillus cereus isolated from various spices. Can. J. Infect. Dis. Med. Microbiol. 2023, 8390778 (2023) https://doi.org/10.1155/2023/8390778

  5. N. Cicero, T. Gervasi, A. Durazzo, M. Lucarini, A. Macrì, V. Nava, F. Giarratana, R. Tardugno, R. Vadalà, A. Santini, Mineral and microbiological analysis of spices and aromatic herbs. Foods. 11, 548 (2022). https://doi.org/10.3390/foods11040548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N. Syamilah, S. Nurul Afifah, M.E. Effarizah, M. Norlia, Mycotoxins and mycotoxigenic fungi in spices and mixed spices: a review. Food Res. 6, 30–46 (2022). https://doi.org/10.26656/fr.2017.6(4).971

  7. C. Spence, The king of spices: on pepper’s pungent pleasure. Int. J. Gastron Food Sci. 35, 100900 (2024). https://doi.org/10.1016/j.ijgfs.2024.100900

    Article  Google Scholar 

  8. A.G. Mathot, F. Postollec, I. Leguerinel, Bacterial spores in spices and dried herbs: the risks for processed food. Compr. Rev. Food Sci. Food Saf. 20, 840–862 (2021). https://doi.org/10.1111/1541-4337.12690

    Article  CAS  PubMed  Google Scholar 

  9. S. Kawachi, Y. Suzuki, Y. Uosaki, K. Tamura, Microbial reduction and quality changes in powdered white and black pepper by treatment with compressed oxygen or carbon dioxide gas. Food Sci. Technol. Res. 21, 51–57 (2015). https://doi.org/10.3136/fstr.21.51

    Article  CAS  Google Scholar 

  10. B. Fogele, R. Granta, O. Valcin, A. Bērziņš, Occurrence and diversity of Bacillus cereus and moulds in spices and herbs. Food Control. 83, 69–74 (2018). https://doi.org/10.1016/j.foodcont.2017.05

    Article  CAS  Google Scholar 

  11. S.D. Bennett, K.A. Walsh, L.H. Gould, Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus–United States, 1998–2008. Clin. Infect. Dis. 57, 425–433 (2013). https://doi.org/10.1093/cid/cit244

    Article  Google Scholar 

  12. F.M. Allai, Z.R.A.A. Azad, N.A. Mir, K. Gul, Recent advances in non-thermal processing technologies for enhancing shelf life and improving food safety. Appl. Food Res. 3, 100258 (2023). https://doi.org/10.1016/j.afres.2022.100258

    Article  CAS  Google Scholar 

  13. Z.T. Chen, G.J. Chen, R. Obenchain, R. Zhang, F. Bai, T.X. Fang, H.W. Wang, Y.J. Lu, R.E. Wirz, Z. Gu, Cold atmospheric plasma delivery for biomedical applications. Mater. Today. 54, 153–188 (2022). https://doi.org/10.1016/j.mattod.2022.03.001

    Article  CAS  Google Scholar 

  14. Q.S. **ang, L.M. Fan, Y.F. Li, S.S. Dong, K. Li, Y.H. Bai, A review on recent advances in plasma-activated water for food safety: current applications and future trends. Crit. Rev. Food Sci. Nutr. 62, 2250–2268 (2022). https://doi.org/10.1080/10408398.2020.1852173

    Article  CAS  PubMed  Google Scholar 

  15. D.A. Laroque, S.T. Seó, G.A. Valencia, J.B. Laurindo, B.A.M. Carciofi, Cold plasma in food processing: design, mechanisms, and application. J. Food Eng. 312, 110748 (2022). https://doi.org/10.1016/j.jfoodeng.2021.110748

    Article  CAS  Google Scholar 

  16. N.U. Sruthi, K. Josna, R. Pandiselvam, A. Kothakota, M. Gavahian, A.M. Khaneghah, Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: a comprehensive review. Food Chem. 368, 130809 (2022). https://doi.org/10.1016/j.foodchem.2021.130809

  17. J. Bora, T. Khan, N.K. Mahnot, Cold plasma treatment concerning quality and safety of food: a review. Curr. Res. Nutr. Food Sci. 10, 427–446 (2022). https://doi.org/10.12944/CRNFSJ.10.2.3

    Article  Google Scholar 

  18. W. Rao, Y.Q. Li, H. Dhaliwal, M.M. Feng, Q.S. **ang, M.S. Roopesh, D.D. Pan, L.H. Du, The application of cold plasma technology in low-moisture foods. Food Eng. Rev. 15, 86–112 (2023). https://doi.org/10.1007/s12393-022-09329-9

    Article  Google Scholar 

  19. H. Darvish, Y. Ramezan, M.R. Khani, A. Kamkari, Effect of low-pressure cold plasma processing on decontamination and quality attributes of Saffron (Crocus sativus L). Food Sci. Nutr. 10, 2082–2090 (2022). https://doi.org/10.1002/fsn3.2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. C. Hertwig, K. Reineke, J. Ehlbeck, B. Erdogdu, C. Rauh, O. Schlüter, Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. J. Food Eng. 167, 12–17 (2015). https://doi.org/10.1016/j.jfoodeng.2014.12.017

    Article  CAS  Google Scholar 

  21. S.P. Kahar, A. Shelar, U.S. Annapure, Effect of pin-to-plate atmospheric cold plasma (ACP) on microbial load and physicochemical properties in cinnamon, black pepper, and fennel. Food Res. Int. 177, 113920 (2024). https://doi.org/10.1016/j.foodres.2023.113920

    Article  CAS  PubMed  Google Scholar 

  22. Y.N. Liu, Y.Y. Sun, Y.H. Wang, Y.J. Zhao, M.L. Duan, H. Wang, R.T. Dai, Y. Liu, X.M. Li, F. Jia, Inactivation mechanisms of atmospheric pressure plasma jet on Bacillus cereus spores and its application on low-water activity foods. Food Res. Int. 169, 112867 (2023). https://doi.org/10.1016/j.foodres.2023.112867

    Article  CAS  PubMed  Google Scholar 

  23. S.S. Dong, L.M. Fan, Y.F. Ma, J. Du, Q.S. **ang, Inactivation of polyphenol oxidase by dielectric barrier discharge (DBD) plasma: kinetics and mechanisms. LWT-Food Sci. Technol. 145, 111322 (2021). https://doi.org/10.1016/j.lwt.2021.111322

  24. P. Aumpa, A. Khawsud, T. Jannu, G. Renaldi, N. Utama-Ang, S.P. Bai-Ngew, R.S. Walter, Samakradhamrongthai, Determination for a suitable ratio of dried black pepper and cinnamon powder in the development of mixed-spice ice cream. Sci. Rep. 12, 15121 (2022). https://doi.org/10.1038/s41598-022-19451-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. E. Summers, S. Wason, J. Subbiah, R. Villa-Rojas, Inactivation of Salmonella enterica in black peppercorn by fluidization with hydrogen peroxide vapor. Front. Food Sci. Technol. 3, 1119715 (2023). https://doi.org/10.3389/frfst.2023.1119715

    Article  Google Scholar 

  26. D.B. Zhao, S.D. Wang, J.Z. Wang, D. Wu, L.Y. Niu, Q.S. **ang, Effects of lauroyl arginate ethyl (LAE) on pathogen inactivation and quality attributes of spinach leaves. J. Food Meas. Charact. 17, 706–715 (2022). https://doi.org/10.1007/s11694-022-01661-2

    Article  Google Scholar 

  27. S.H. Kim, S.H. Park, D.H. Kang, Inactivation of Bacillus cereus endospores on black pepper by pulsed superheated steam system. Food Res. Int. 167, 112649 (2023). https://doi.org/10.1016/j.foodres.2023.112649

    Article  CAS  PubMed  Google Scholar 

  28. Q.S. **ang, X.F. Liu, S.N. Liu, Y.F. Ma, C.Q. Xu, Y.H. Bai, Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innovative Food Sci. Emerg. Technol. 52, 49–56 (2019). https://doi.org/10.1016/j.ifset.2018.11.012

    Article  CAS  Google Scholar 

  29. O.A. Olalere, H.N. Abdurahman, R.B. Yunus, O.R. Alara, M.M. Ahmad, Y.H. Zaki, H.S.M. Abdlrhman, Parameter study, antioxidant activities, morphological and functional characteristics in microwave extraction of medicinal oleoresins from black and white pepper. J. Taibah Univ. Sci. 12, 730–737 (2018). https://doi.org/10.1080/16583655.2018.1515323

    Article  Google Scholar 

  30. H. Liu, F.K. Zeng, Q.H. Wang, H.S. Wu, L.H. Tan, Studies on the chemical and flavor qualities of white pepper (Piper nigrum L.) derived from five new genotypes. Eur. Food Res. Technol. 237, 245–251 (2013). https://doi.org/10.1007/s00217-013-1986-x

    Article  CAS  Google Scholar 

  31. H. Nanteza, R. Dewanti-Hariyadi, S. Nurjanah, The occurrence of Bacillus cereus in white pepper from Bogor, Indonesia. IOP conf. Ser. : Earth Environ. Sci. 1097, 012030 (2022). https://doi.org/10.1088/1755-1315/1097/1/012030

    Article  Google Scholar 

  32. V. Hemmati, F. Garavand, M. Goudarzi, Z. Sarlak, I. Cacciotti, B.K. Tiwari, Cold atmospheric-pressure plasma treatment of turmeric powder: microbial load, essential oil profile, bioactivity and microstructure analyses. Int. J. Food Sci. Technol. 56, 2224–2232 (2021). https://doi.org/10.1111/ijfs.14838

    Article  CAS  Google Scholar 

  33. S.G. Joshi, M. Cooper, A. Yost, M. Paff, U.K. Ercan, G. Fridman, G. Friedman, A. Fridman, A.D. Brooks, Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 55, 1053–1062 (2011). https://doi.org/10.1128/AAC.01002-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Wiktor, B. Hrycak, M. Jasiński, K. Rybak, M. Kieliszek, K. Kraśniewska, D. Witrowa-Rajchert, Impact of atmospheric pressure microwave plasma treatment on quality of selected spices. Appl. Sci. 10, 6815 (2020). https://doi.org/10.3390/app10196815

    Article  CAS  Google Scholar 

  35. N. Nurdjannah, Use of antioxidant to inhibit browning on white pepper decorticating process. Ind. Crops Res. J. 11, 78–84 (2005). https://doi.org/10.21082/jlittri.v11n2.2005.78-84

    Article  Google Scholar 

  36. M. Ali, M.F. Manzoor, X.A. Zeng, A. Abida, U. Roobab, Impact of sustainable emerging cold plasma technology on the optical properties of foods. Food Biosci. 59, 104220 (2024). https://doi.org/10.1016/j.fbio.2024.104220

    Article  CAS  Google Scholar 

  37. Y. Ramezan, A. Kamkari, A. Lashkari, D. Moradi, A.N. Tabrizi, A review on mechanisms and impacts of cold plasma treatment as a non-thermal technology on food pigments. Food Sci. Nutr. 12, 1502–1527 (2023). https://doi.org/10.1002/fsn3.3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Paul, R. Ara, M.R. Ahmad, P. Hajong, G. Paul, M.S. Kobir, M.H. Rahman, Effect of blanching time and drying metho on quality of black pepper (Piper nigrum). J. Food Technol. Res. 8, 18–25 (2021). https://doi.org/10.18488/journal.58.2021.81.18.25

    Article  Google Scholar 

  39. E. Feizollahi, B. Iqdiam, T. Vasanthan, M.S. Thilakarathna, M.S. Roopesh, Effects of atmospheric-pressure cold plasma treatment on deoxynivalenol degradation, quality parameters, and germination of barley grains. Appl. Sci. 10, 3530 (2020). https://doi.org/10.3390/app10103530

    Article  CAS  Google Scholar 

  40. X.L. Zhang, C.S. Zhong, A.S. Mujumdar, X.H. Yang, L.Z. Deng, J. Wang, H.W. **ao, Cold plasma pretreatment enhances drying kinetics and quality attributes of Chili pepper (Capsicum annuum L). J. Food Eng. 241, 51–57 (2019). https://doi.org/10.1016/j.jfoodeng.2018.08.002

    Article  CAS  Google Scholar 

  41. S. Puleo, M. Valentino, P. Masi, R. Di, Monaco, Hardness sensitivity: are old, young, female and male subjects all equally sensitive? Food Qual. Prefer. 90, 104118 (2021). https://doi.org/10.1016/j.foodqual.2020.104118

  42. M. Ahangari, Y. Ramezan, M.R. Khani, Effect of low pressure cold plasma treatment on microbial decontamination and physicochemical properties of dried walnut kernels (Juglans regia L.). J. Food Process. Eng. 44, e13593 (2021). https://doi.org/10.1111/jfpe.13593

    Article  CAS  Google Scholar 

  43. F. Gu, G. Wu, Y. Fang, H. Zhu, Nontargeted metabolomics for phenolic and polyhydroxy compounds profile of pepper (Piper nigrum L.) products based on LC-MS/MS analysis. Molecules. 23, 1985 (2018). https://doi.org/10.3390/molecules23081985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. C.M.G. Charoux, L. Free, L.M. Hinds, R.K. Vijayaraghavan, S. Daniels, C.P. O’Donnell, B.K. Tiwari, Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of a model liquid food system and black pepper grains. LWT-Food Sci. Technol. 118, 108716 (2020). https://doi.org/10.1016/j.lwt.2019.108716

    Article  CAS  Google Scholar 

  45. Y.H. Wang, Y.A. Liu, Y.J. Zhao, Y.Y. Sun, H. Wang, D.Y. Wang, J.L. Deng, X.J. Cui, Z.Q. Ma, R.T. Dai, X.M. Li, F. Jia, A systematic investigation of direct and indirect-cold atmospheric plasma treatment on Bacillus cereus and the application in black pepper. Innovative Food Sci. Emerg. Technol. 92, 103583 (2024). https://doi.org/10.1016/j.ifset.2024.103583

    Article  CAS  Google Scholar 

  46. A. Tiwari, K.R. Mahadik, S.Y. Gabhe, Piperine: a comprehensive review of methods of isolation, purification, and biological properties. Med. Drug Discovery. 7, 100027 (2020). https://doi.org/10.1016/j.medidd.2020.100027

    Article  Google Scholar 

  47. C. Hertwig, K. Reineke, J. Ehlbeck, D. Knorr, O. Schlüter, Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 55, 221–229 (2015). https://doi.org/10.1016/j.foodcont.2015.03.003

    Article  CAS  Google Scholar 

  48. E.J. Szil, S.H. Hong, J.S. Oh, N. Gaur, R.D. Short, Tracking the penetration of plasma reactive species in tissue models. Trends Biotechnol. 36, 594–602 (2018). https://doi.org/10.1016/j.tibtech.2017.07.012

    Article  CAS  Google Scholar 

  49. B. Zhang, C.M. Tan, F.L. Zou, Y. Sun, N. Shang, W. Wu, Impacts of cold plasma technology on sensory, nutritional and safety quality of food: a review. Foods. 11, 2818 (2022). https://doi.org/10.3390/foods11182818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Ashokkumar, M. Murugan, M.K. Dhanya, A. Pandian, T.D. Warkentin, Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: a review. Clin. Phytosci. 7, 52 (2021). https://doi.org/10.1186/s40816-021-00292-2

    Article  CAS  Google Scholar 

  51. S. Zargarchi, J. Hornbacher, S.M. Afifi, S. Saremnezhad, D. Günal-Köroğlu, E. Capanoglu, T. Esatbeyoglu, Exploring the impact of cold plasma treatment on the antioxidant capacity, ascorbic acid, phenolic profile, and bioaccessibility of fruits and fruit juices. Food Front. 5, 1108–1125 (2024). https://doi.org/10.1002/fft2.372

    Article  CAS  Google Scholar 

  52. S. Mošovská, V. Medvecká, N. Halászová, P. Ďurina, Ľ. Valík, A. Mikulajová, A. Zahoranová, Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res. Int. 106, 862–869 (2018). https://doi.org/10.1016/j.foodres.2018.01.066

    Article  CAS  PubMed  Google Scholar 

  53. H. Anwar, T. Anwar, S. Murtaza, Review on food quality assessment using machine learning and electronic nose system. Biosens. Bioelectron. X. 14, 100365 (2023). https://doi.org/10.1016/j.biosx.2023.100365

    Article  CAS  Google Scholar 

  54. P.H. Campelo, E.G. Alves Filho, L.M.A. Silva, E.S. de Brito, S. Rodrigues, F.A.N. Fernandes, Modulation of aroma and flavor using glow discharge plasma technology. Innovative Food Sci. Emerg. Technol. 62, 102363 (2020). https://doi.org/10.1016/j.ifset.2020.102363

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province (24HASTIT058), the National Natural Science Foundation of China (No. 32072356), and the Collaborative Innovation Special Project of Zhengzhou (No. 2021ZDPY0201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qisen **ang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Jiu, X., Ma, Y. et al. Effects of dielectric barrier discharge plasma on Bacillus cereus spores inactivation and quality attributes of white peppers. Food Measure (2024). https://doi.org/10.1007/s11694-024-02720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02720-6

Keywords

Navigation