Log in

Investigating antioxidant, anti-obesity, and anticancer potential in raw and processed flour extracts of barnyard millets

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Barnyard millet (Echinochloa frumantacea L.) is a traditional South Indian dietary staple known for its short grain ripening period of 45 days. Various processing methods are employed to enhance its nutrient quality, aid digestion, and improve bioavailability by reducing anti-nutrients. This study aimed to compare the nutritional properties of barnyard millet processed through different methods, including whole flour, de-husked flour, and roasted flour. Samples were collected from different regions in Tamil Nadu, namely Chennai, Kovilpatti, and Virudhunagar. Subsequently, they underwent maceration extraction using methanol to evaluate their nutritional, antioxidant, and anti-nutritional properties. Phytochemical analysis revealed elevated levels of selected compounds in all samples, with processing methods resulting in a reduction of anti-nutrient content. Notably, the roasted sample from Chennai exhibited significant antioxidant activity, while de-husked flour from Chennai and Kovilpatti regions demonstrated inhibition of in vitro anti-obesity activity. RP-HPLC analysis identified major metabolites, and molecular docking against oxidoreductase proteins highlighted the efficacy of Chlorogenic acid and Gallic acid. These findings suggest the potential for develo** novel therapeutic drugs for diabetes and anti-cancer health benefits associated with specific barnyard millet processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. A. Singh, M. Bharath, A. Kotiyal, L. Rana, D. Rajpal, Barnyard millet: the underutilized nutraceutical minor millet crop. Pharma Innov J. 11, 115–128 (2022)

    CAS  Google Scholar 

  2. K. Goel, S. Goomer, D. Aggarwal, Formulation and optimization of value-added barnyard millet vermicelli using response surface methodology. Asian J Dairy Food Res. 40, 55–61 (2021). https://doi.org/10.18805/ajdfr.DR-1588

    Article  Google Scholar 

  3. H. Wang, Y. Fu, Q. Zhao, D. Hou, X. Yang, S. Bai, X. Diao, Y. Xue, Q. Shen, Effect of different processing methods on the millet polyphenols and their anti-diabetic potential. Front. Nutr. (2022). https://doi.org/10.3389/fnut.2022.780499

    Article  PubMed  PubMed Central  Google Scholar 

  4. A.J. Erasmus, M. Yushau, O.O. Olugbenga, Processing effects on physicochemical and proximate composition of finger millet (Eleusine coracana). Greener J Biol Sci. 8, 014–020 (2018). https://doi.org/10.15580/gjbs.2018.2.032018048

    Article  Google Scholar 

  5. N. Sharma, S.K. Goyal, T. Alam, S. Fatma, A. Chaoruangrit, K. Niranjan, Effect of high pressure soaking on water absorption, gelatinization, and biochemical properties of germinated and non-germinated foxtail millet grains. J. Cereal Sci. 83, 162–170 (2018). https://doi.org/10.1016/j.jcs.2018.08.013

    Article  CAS  Google Scholar 

  6. Z.A. Mahmud, S.C. Bachar, C.M. Hasan, T.B. Emran, N. Qais, M.M. Uddin, Phytochemical investigations and antioxidant potential of roots of Leea macrophylla (Roxb.). BMC. Res. Notes (2017). https://doi.org/10.1186/s13104-017-2503-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. S. Pandey, N. Joshi, D.M. Kumar, D.P. Nautiyal, D.G. Papnai, R. Bhaskar, Nutritional profile and health benefits of Jhangora: a mini review. Pharma Innov. 10, 379–381 (2021). https://doi.org/10.22271/tpi.2021.v10.i3f.5799

    Article  Google Scholar 

  8. P. Kumari, P. Kajla, D. Kaushik, Barnyard millet (Echinochloa frumentacea link) cookies: development, value addition, consumer acceptability, nutritional and shelf life evaluation. IOSR J Environ Sci Toxicol Food Technol. 7, 1–10 (2013). https://doi.org/10.9790/2402-0730110

    Article  CAS  Google Scholar 

  9. M. Krishna, J. Malaiyandi, S. Ramasamy, B. Muthusamy, G. Shanmugam, Effect of sample extraction, preparation methods on HPLC quantification of plumbagin in in vivo and in vitro plant parts of Plumbago zeylanica L., African. J. Biotechnol. 17, 1021–1030 (2018). https://doi.org/10.5897/ajb2018.16561

    Article  CAS  Google Scholar 

  10. V.L. Singleton, J.A. Rossi Jr., J.A. Rossi Jr., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Article  CAS  Google Scholar 

  11. R.L. Workman, Gathercoal and WIrth pharmacognosy. Acad. Med. 32, 315 (1957). https://doi.org/10.1097/00001888-195704000-00025

    Article  Google Scholar 

  12. P. Bajpai, Chapter 17—carbohydrate chemistry, in Biermann’s handbook of pulp and paper, 3rd edn., ed. by P. Bajpa (Amsterdam, Elsevier, 2018), pp.363–371

    Chapter  Google Scholar 

  13. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1016/s0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  14. H. Barnes, J. Blackstock, Estimation of lipids in marine animals and tissues: detailed investigation of the sulphophosphovanilun method for “total” lipids. J. Exp. Mar. Bio. Ecol. 12, 103–118 (1973). https://doi.org/10.1016/0022-0981(73)90040-3

    Article  CAS  Google Scholar 

  15. F. Shamsa, H.R. Monsef, R. Ghamooghi, R.M. Verdian, Spectrophotometric determination of total alkaloids in Peganum harmala L. Using Bromocresol Green. Res. J. Phytochem. 1, 79–82 (2007). https://doi.org/10.3923/rjphyto.2007.79.82

    Article  CAS  Google Scholar 

  16. A. Patel, A. Patel, N.M. Patel, Estimation of flavonoid, polyphenolic content and in-vitro antioxidant capacity of leaves of Tephrosia purpurea. Int. J. Pharma Sci. Res. 1, 66–77 (2010)

    CAS  Google Scholar 

  17. J. Kubola, S. Siriamornpun, Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 110, 881–890 (2008). https://doi.org/10.1016/j.foodchem.2008.02.076

    Article  CAS  PubMed  Google Scholar 

  18. S.Y. Wang, H. Jiao, Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radical’s, and singlet oxygen. J. Agric. Food Chem. 48, 5677–5684 (2000). https://doi.org/10.1021/jf000766i

    Article  CAS  PubMed  Google Scholar 

  19. G. Sasipriya, P. Siddhuraju, Effect of different processing methods on antioxidant activity of underutilized legumes, Entada scandens seed kernel and Canavalia gladiata seeds. Food Chem. Toxicol. 50, 2864–2872 (2012). https://doi.org/10.1016/j.fct.2012.05.048

    Article  CAS  PubMed  Google Scholar 

  20. C. Beauchamp, I. Fridovich, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971). https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  21. R. Pulido, L. Bravo, F. Saura-Calixto, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48, 3396–3402 (2000). https://doi.org/10.1021/jf9913458

    Article  CAS  PubMed  Google Scholar 

  22. M. Oyaizu, Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J. Nutr. Diet. 44, 307–315 (1986). https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  CAS  Google Scholar 

  23. T.C.P. Dinis, V.M.C. Madeira, L.M. Almeida, Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315, 161–169 (1994). https://doi.org/10.1006/abbi.1994.1485

    Article  CAS  PubMed  Google Scholar 

  24. G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  25. J. Iqbal, A. Andleeb, H. Ashraf, B. Meer, A. Mehmood, H. Jan, G. Zaman, M. Nadeem, S. Drouet, H. Fazal, N. Giglioli-Guivarch, Potential antimicrobial, antidiabetic, catalytic, antioxidant and ROS/RNS inhibitory activities of Silybum marianum mediated biosynthesized copper oxide nanoparticles. RSC Adv. 12, 14069–14083 (2022). https://doi.org/10.1039/d2ra01929a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. I. Ullah, A.T. Khalil, M. Ali, J. Iqbal, W. Ali, S. Alarifi, Z.K. Shinwari, Green-synthesized silver nanoparticles induced apoptotic cell death in MCF-7 breast cancer cells by generating reactive oxygen species and activating caspase 3 and 9 enzyme activities. Oxid. Med. Cell. Longev. (2020). https://doi.org/10.1155/2020/1215395

    Article  PubMed  PubMed Central  Google Scholar 

  27. E.S. Al-Sheddi, N.N. Farshori, M.M. Al-Oqail, S.M. Al-Massarani, Q. Saquib, R. Wahab, J. Musarrat, A.A. Al-Khedhairy, M.A. Siddiqui, Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl. (2018). https://doi.org/10.1155/2018/9390784

    Article  PubMed  PubMed Central  Google Scholar 

  28. Y.L. Wu, W. Zhang, L. Da Guo, S.Q. Zhang, S.Z. Liang, Optimization of ultrasonic-assisted ethanol extraction of polyphenols from Phyllanthus emblica by response surface methodology. Chem. Pap. 78, 221–229 (2024). https://doi.org/10.1007/s11696-023-03066-x

    Article  CAS  Google Scholar 

  29. G.P. Yadav, C.G. Dalbhagat, H.N. Mishra, Effects of extrusion process parameters on cooking characteristics and physicochemical, textural, thermal, pasting, microstructure, and nutritional properties of millet-based extruded products: a review. J. Food Process Eng (2022). https://doi.org/10.1111/jfpe.14106

    Article  Google Scholar 

  30. N. Rajeswari, V.P. Priyadharshini, Evaluation of nutritional and nutraceutical content of polished and unpolished barnyard millet - an analytical study. Curr. Res. Nutr. Food Sci. 9(3), 1067–1073 (2021). https://doi.org/10.12944/CRNFSJ.9.3.31

    Article  Google Scholar 

  31. L. Guifeng, W. Jianhu, B. Huijuan, Z. Lei, Process optimization for extraction of millet small bran oil by aqueous ethanol. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/392/5/052023

    Article  Google Scholar 

  32. K. Shunmugapriya, S. Kanchana, T.U. Maheswari, R. Saravanakumar, C. Vanniarajan, Optimization of the process parameters for extraction of millet milk. Int J Biochem Res Rev. (2020). https://doi.org/10.9734/ijbcrr/2020/v29i430184

    Article  Google Scholar 

  33. N. Sachdev, D.S. Goomer, D.L.R. Singh, D.V.M. Pathak, D.D. Aggarwal, D.R.K. Chowhan, Current status of millet seed proteins and its applications: a comprehensive review. Appl Food Res. (2023). https://doi.org/10.1016/j.afres.2023.100288

    Article  Google Scholar 

  34. S.R. Pradeep, M. Guha, Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem. 126, 1643–1647 (2011). https://doi.org/10.1016/j.foodchem.2010.12.047

    Article  CAS  PubMed  Google Scholar 

  35. H. Zhang, W. Zhao, T. Bai, L. Fu, Z. Chen, X. **g, X. Wang, Sustainable extraction of polyphenols from millet using switchable deep eutectic solvents. LWT. (2022). https://doi.org/10.1016/j.lwt.2022.114082

    Article  Google Scholar 

  36. S. Muzammil, Y. Wang, M.H. Siddique, E. Zubair, S. Hayat, M. Zubair, A. Roy, R. Mumtaz, M. Azeem, T. Bin Emran, M.Q. Shahid, Polyphenolic composition antioxidant antiproliferative and antidiabetic activities of Coronopus didymus leaf extracts. Molecules (2022). https://doi.org/10.3390/molecules27196263

    Article  PubMed  PubMed Central  Google Scholar 

  37. M. Watanabe, Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J. Agric. Food Chem. 47, 4500–4505 (1999). https://doi.org/10.1021/jf990498s

    Article  CAS  PubMed  Google Scholar 

  38. B. Tripathi, K. Platel, Iron fortification of finger millet (Eleucine coracana) flour with EDTA and folic acid as co-fortificants. Food Chem. 126, 537–542 (2011). https://doi.org/10.1016/j.foodchem.2010.11.039

    Article  CAS  Google Scholar 

  39. B. Zheng, Y. Yuan, J. **ang, W. **, J.B. Johnson, Z. Li, C. Wang, D. Luo, Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: optimization, comparison and bioactivities. LWT. (2022). https://doi.org/10.1016/j.lwt.2021.112740

    Article  Google Scholar 

  40. M. Wu, Q. Yang, Y. Wu, J. Ouyang, Inhibitory effects of acorn (Quercus variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV. Food Biosci. (2021). https://doi.org/10.1016/j.fbio.2021.101224

    Article  Google Scholar 

  41. C.B. Yadav, J. Tokas, D. Yadav, A. Winters, R.B. Singh, R. Yadav, P.I. Gangashetty, R.K. Srivastava, R.S. Yadav, Identifying anti-oxidant biosynthesis genes in pearl millet [Pennisetum glaucum (L.) R. Br.] using genome-wide association analysis. Front. Plant Sci. (2021). https://doi.org/10.3389/fpls.2021.599649

    Article  PubMed  PubMed Central  Google Scholar 

  42. P.M. Pradeep, Y.N. Sreerama, Impact of processing on the phenolic profiles of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chem. 169, 455–463 (2015). https://doi.org/10.1016/j.foodchem.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  43. R.S. Devi, P. Nazni, Sensory characteristics, total polyphenol content and in vitro antioxidant activity of value added processed barnyard millet flour chapattis. J. Food Process. Technol. (2016). https://doi.org/10.4172/2157-7110.1000595

    Article  Google Scholar 

  44. Q. Ma, H. Wang, E. Wu, H. Zhang, Y. Feng, B. Feng, Widely targeted metabolomic analysis revealed the effects of alkaline stress on nonvolatile and volatile metabolites in broomcorn millet grains. Food Res. Int. (2023). https://doi.org/10.1016/j.foodres.2023.113066

    Article  PubMed  Google Scholar 

  45. F. Shahidi, A. Chandrasekara, Processing of millet grains and effects on non-nutrient antioxidant compounds. Process Impact Act Compon Food (2015). https://doi.org/10.1016/B978-0-12-404699-3.00041-X

    Article  Google Scholar 

  46. D. Mounika, U. Sangeetha, G. Sireesha, Estimation of phytochemicals in millets and selected millet products. Indian J. Appl. Pure Bio. 37, 810–820 (2022)

    Google Scholar 

  47. C. Lyzu, S. Mitra, K. Perveen, Z. Khan, A.M. Tareq, N.A. Bukhari, F.M. Husain, E.P. Lipy, D. Islam, M. Hakim, T. Bin Emran, M.G. Dashti, Phytochemical profiling, antioxidant activity, and in silico analyses of Sterculia villosa and Vernonia patula. Evid Based Complement Altern Med (2022). https://doi.org/10.1155/2022/3190496

    Article  Google Scholar 

  48. J.Y. Kim, K.C. Jang, B.R. Park, S.I. Han, K.J. Choi, S.Y. Kim, S.H. Oh, J.E. Ra, T.J. Ha, J.H. Lee, J. Hwang, H.W. Kang, W.D. Seo, Physicochemical and antioxidative properties of selected barnyard millet (Echinochloa utilis) species in Korea. Food Sci. Biotechnol. 20, 461–469 (2011). https://doi.org/10.1007/s10068-011-0064-z

    Article  CAS  Google Scholar 

  49. A. Chandrasekara, F. Shahidi, Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J. Funct. Foods. 3, 159–170 (2011). https://doi.org/10.1016/j.jff.2011.03.008

    Article  CAS  Google Scholar 

  50. K. Shankaramurthy, M. Somannavar, Moisture, carbohydrate, protein, fat, calcium, and zinc content in finger, foxtail, pearl, and proso millets. Indian J. Heal. Sci. Biomed. Res. 12, 228 (2019). https://doi.org/10.4103/kleuhsj.kleuhsj_32_19

    Article  Google Scholar 

  51. M. Mahajan, P. Singla, S. Sharma, Sustainable postharvest processing methods for millets: a review on its value-added products. J. Food Process Eng (2023). https://doi.org/10.1111/jfpe.14313

    Article  Google Scholar 

  52. S. Singh, G. Bisla, Nutritional and lipid composition of Avena sativa, Hordeum vulgare and Echinochloa frumentacea. World J Adv Res Rev. 11, 23–27 (2021). https://doi.org/10.30574/wjarr.2021.11.3.0415

    Article  CAS  Google Scholar 

  53. F.S. Pushparaj, A. Urooj, Influence of processing on dietary fiber, tannin and in vitro protein digestibility of pearl millet. Food Nutr. Sci. 02, 895–900 (2011). https://doi.org/10.4236/fns.2011.28122

    Article  CAS  Google Scholar 

  54. M.Z. Uddin, M.S. Rana, S. Hossain, S. Ferdous, E. Dutta, M. Dutta, T. Bin Emran, In vivo neuroprotective, antinociceptive, anti-inflammatory potential in Swiss albino mice and in vitro antioxidant and clot lysis activities of fractionated Holigarna longifolia Roxb. bark extract. J Complement Integr Med (2020). https://doi.org/10.1515/jcim-2019-0102

    Article  Google Scholar 

  55. M.S.H. Kabir, M.M. Hossain, M.I. Kabir, M.M. Rahman, A. Hasanat, T. Bin Emran, M.A. Rahman, Phytochemical screening, antioxidant, thrombolytic, α-amylase inhibition and cytotoxic activities of ethanol extract of Steudnera colocasiifolia K. Koch leaves. J. Young Pharm. 8, 391–397 (2016). https://doi.org/10.5530/jyp.2016.4.15

    Article  CAS  Google Scholar 

  56. Y.D. Kom, In vitro antioxidant activity of barnyard millet (Echinochola esculenta (A. Braun) H. Scholz) and Proso Millet (Panicum miliaceum L). SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3532486

    Article  Google Scholar 

  57. S. Kulla, T.V. Hymavathi, B.A. Kumari, R.G. Reddy, C.V.D. Rani, Impact of germination on the nutritional, antioxidant and antinutrient characteristics of selected minor millet flours. Ann Phytomedicine An Int J (2021). https://doi.org/10.21276/ap.2021.10.1.18

    Article  Google Scholar 

  58. D. Kumari, T. Madhujith, A. Chandrasekara, Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka. Food Sci. Nutr. 5, 474–485 (2017). https://doi.org/10.1002/fsn3.415

    Article  CAS  PubMed  Google Scholar 

  59. F. Hua, P. Zhou, H.Y. Wu, G.X. Chu, Z.W. **e, G.H. Bao, Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu’an GuaPian tea: molecular docking and interaction mechanism. Food Funct. 9, 4173–4183 (2018). https://doi.org/10.1039/c8fo00562a

    Article  CAS  PubMed  Google Scholar 

  60. G. Chandrasekher, D.S. Raju, T.N. Pattabiraman, Natural plant enzyme inhibitors. α-amylase inhibitors in millets. J. Sci. Food Agric. 32, 9–16 (1981). https://doi.org/10.1002/jsfa.2740320103

    Article  CAS  Google Scholar 

  61. I.O. Adewale, E.N. Agumanu, F.I. Otih-Okoronkwo, Comparative studies on α-amylases from malted maize (Zea mays), millet (Eleusine coracana) and Sorghum (Sorghum bicolor). Carbohydr. Polym. 66, 71–74 (2006). https://doi.org/10.1016/j.carbpol.2006.02.022

    Article  CAS  Google Scholar 

  62. M.H. Badau, I.A. Jideani, I. Nkama, Amylase activities and values in hot and cold water extracts of pearl millet. J. Appl. Glycosci. 53, 1–6 (2006). https://doi.org/10.5458/jag.53.1

    Article  CAS  Google Scholar 

  63. J.R. Taylor, K.G. Duodu, Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health-enhancing properties of sorghum and millet food and beverage products. J. Sci. Food Agric. 95, 225–237 (2015). https://doi.org/10.1002/jsfa.6713

    Article  CAS  PubMed  Google Scholar 

  64. L. Zhang, J. Li, F. Han, Z. Ding, L. Fan, Effects of different processing methods on the antioxidant activity of 6 cultivars of foxtail millet. J. Food Qual. (2017). https://doi.org/10.1155/2017/8372854

    Article  Google Scholar 

  65. M.O.K. Azad, D.I. Jeong, M. Adnan, T. Salitxay, J.W. Heo, M.T. Naznin, J.D. Lim, D.H. Cho, B.J. Park, C.H. Park, Effect of different processing methods on the accumulation of the phenolic compounds and antioxidant profile of broomcorn millet (Panicum miliaceum L.) flour. Foods (2019). https://doi.org/10.3390/foods8070230

  66. H. Fei, Z. Lu, D. Wenlong, L. Aike, Effect of roasting on phenolics content and antioxidant activity of proso millet. Int. J. Food Eng. (2018). https://doi.org/10.18178/ijfe.4.2.110-116

    Article  Google Scholar 

  67. S. Deprez, I. Mila, J.F. Huneau, D. Tome, A. Scalbert, Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxidants Redox Signal. 3, 957–967 (2001). https://doi.org/10.1089/152308601317203503

    Article  CAS  Google Scholar 

  68. H. Zieliński, A. Michalska, M.K. Piskuła, H. Kozłowska, Antioxidants in thermally treated buckwheat groats. Mol. Nutr. Food Res. 50, 824–832 (2006). https://doi.org/10.1002/mnfr.200500258

    Article  CAS  PubMed  Google Scholar 

  69. X.X. Guo, X.H. Sha, E. Rahman, Y. Wang, B.P. Ji, W. Wu, F. Zhou, Antioxidant capacity and amino acid profile of millet bran wine and the synergistic interaction between major polyphenols. J. Food Sci. Technol. 55, 1010–1020 (2018). https://doi.org/10.1007/s13197-017-3014-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. C. Simon, A.W. Herling, G. Preibisch, H.J. Burger, Upregulation of hepatic glucose 6-phosphatase gene expression in rats treated with an inhibitor of glucose-6-phosphate translocase. Arch. Biochem. Biophys. 373, 418–428 (2000). https://doi.org/10.1006/abbi.1999.1560

    Article  CAS  PubMed  Google Scholar 

  71. M.I. Alkhalaf, Chemical composition, antioxidant, anti-inflammatory and cytotoxic effects of Chondrus crispus species of red algae collected from the Red Sea along the shores of Jeddah city. J. King Saud Univ. Sci (2021). https://doi.org/10.1016/j.jksus.2020.10.007

    Article  Google Scholar 

  72. A.A. Alzandi, D.M. Naguib, A.S.M. Abas, Onion extract encapsulated on nano chitosan: a promising anticancer agent. J. Gastrointest. Cancer 53, 211–216 (2022). https://doi.org/10.1007/s12029-020-00561-2

    Article  CAS  PubMed  Google Scholar 

  73. G. Kumar, R. Gupta, S. Sharan, P. Roy, D.M. Pandey, Anticancer activity of plant leaves extract collected from a tribal region of India. 3 Biotech (2019). https://doi.org/10.1007/s13205-019-1927-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Gowtham Kumaraguru: conceptualization, methodology, data curation, writing—original draft. Arulmathi Ramalingam: formal in-silico data analysis. Girija Shanmugam: writing—review and editing. Ashok Kumar Krishna Kumar: methodology. Suganthi Muthusamy: data curation. Jayanthi Malaiyandi: conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Jayanthi Malaiyandi.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaraguru, G., Ramalingam, A., Shanmugam, G. et al. Investigating antioxidant, anti-obesity, and anticancer potential in raw and processed flour extracts of barnyard millets. Food Measure (2024). https://doi.org/10.1007/s11694-024-02633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02633-4

Keywords

Navigation