Log in

Physical and thermal characteristics of amaranth (Amaranthus hypochondriacus) protein nanoparticles affected by ultrasound time and microbial transglutaminase

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In recent years, protein nanoparticles have been well considered in the production of Pickering emulsions and low-calorie foods, but few of them have been introduced. Therefore, finding new sources of nanoparticles and modifying their physical and thermal properties is very important. In this paper, the effect of various levels of microbial transglutaminase (mTG) (0–30 μg/g of sample) and ultrasound time (0–20 min) on properties of nanoparticles prepared with Amaranth Protein Isolate (API) were investigated and optimal levels were achieved by Response surface methodology. Based on the data analysis, ultrasound had a significant effect on tested properties, so that with an increase in ultrasound time, the particle size became smaller. Excluding Zeta potential, all nanoparticles properties were influenced by the interaction of ultrasound and mTG. The enzyme had a great impact (P < 0.001) on Nanoparticles characteristics except for Glass Transition Temperature. However, depending on enzyme content, changeable behaviors in particle size, particle size distribution and denaturation temperature were detected which is generally associated with the changes in the structure and formation of covalent bonds with the function of mTG. Scanning electron microscopy of FE-SEM showed spherically synthesized nanoparticles with a size between 53 to 155 nm. This seems to facilitate the use of ultrasound reaction between nanoparticles and biopolymer matrix. Consequently, the optimized levels of 16.7 min for ultrasound and 9.47 micg/g for mTG resulted in generating a product with the considered characteristics. This novel and edible amaranth-based Nanoparticles could be suggested for Pickering emulsion preparation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data supporting the findings of this study has been included within the paper and its supplementary material.

References

  1. G.E. Inglett, D. Chen, S.X. Liu, Physical properties of gluten-free sugar cookies made from amaranth–oat composites. LWT 63, 214–220 (2015). https://doi.org/10.1016/j.lwt.2015.03.056

    Article  CAS  Google Scholar 

  2. A. Dhiman, K. Thakur, V. Parmar, S. Sharma, R. Sharma, G. Kaur, B. Singh, R. Suhag, New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. J. Food Meas. Charact. 17, 3845–3873 (2023). https://doi.org/10.1007/s11694-023-01919-3

    Article  Google Scholar 

  3. E. Dickinson, Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocoll. 68, 219–231 (2017). https://doi.org/10.1016/j.foodhyd.2016.06.024

    Article  CAS  Google Scholar 

  4. J.W. De Folter, M.W. Van Ruijven, K.P. Velikov, Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter 8, 6807–6815 (2012). https://doi.org/10.1039/C2SM07417F

    Article  Google Scholar 

  5. M. Destribats, M. Rouvet, C. Gehin-Delval, C. Schmitt, B.P. Binks, Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions. Soft Matter 10, 6941–6954 (2014). https://doi.org/10.1039/C4SM00179F

    Article  CAS  PubMed  Google Scholar 

  6. H.-N. Liang, C.-H. Tang, Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0. LWT 58, 463–469 (2014). https://doi.org/10.1016/j.lwt.2014.03.023

    Article  CAS  Google Scholar 

  7. F. Liu, C.-H. Tang, Soy glycinin as food-grade Pickering stabilizers: Part I. Structural characteristics, emulsifying properties and adsorption/arrangement at interface. Food Hydrocoll. 60, 606–619 (2016). https://doi.org/10.1016/j.foodhyd.2015.04.025

    Article  CAS  Google Scholar 

  8. X.-S. Qin, Q.-Q. Sun, Y.-Y. Zhao, X.-Y. Zhong, D.-D. Mu, S.-T. Jiang, S.-Z. Luo, Z. Zheng, Transglutaminase-set colloidal properties of wheat gluten with ultrasound pretreatments. Ultrason. Sonochem. 39, 137–143 (2017). https://doi.org/10.1016/j.ultsonch.2017.04.027

    Article  CAS  PubMed  Google Scholar 

  9. F. Liu, S.-Y. Ou, C.-H. Tang, Ca2+-induced soy protein nanoparticles as pickering stabilizers: fabrication and characterization. Food Hydrocoll. 65, 175–186 (2017). https://doi.org/10.1016/j.foodhyd.2016.11.011

    Article  CAS  Google Scholar 

  10. R. Sharma, M. Zakora, K.B. Qvist, Characteristics of oil–water emulsions stabilised by an industrial α-lactalbumin concentrate, cross-linked before and after emulsification, by a microbial transglutaminase. Food Chem. 79, 493–500 (2002). https://doi.org/10.1016/S0308-8146(02)00225-X

    Article  CAS  Google Scholar 

  11. M.C. Condés, A.A. Scilingo, M.C. Añón, Characterization of amaranth proteins modified by trypsin proteolysis. Structural and functional changes. LWT 42, 963–970 (2009). https://doi.org/10.1016/j.lwt.2008.12.008

    Article  CAS  Google Scholar 

  12. T. Zhang, Y. Zhao, X. Tian, J. Liu, H. Ye, X. Shen, Effect of ultrasound pretreatment on structural, physicochemical, rheological and gelation properties of transglutaminase cross-linked whey protein soluble aggregates. Ultrason. Sonochem. 74, 105553 (2021). https://doi.org/10.1016/j.ultsonch.2021.105553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Marsanasco, A.L. Márquez, J.R. Wagner, S.D.V. Alonso, N.S. Chiaramoni, Liposomes as vehicles for vitamins E and C: an alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res. Int. 44, 3039–3046 (2011). https://doi.org/10.1016/j.foodres.2011.07.025

    Article  CAS  Google Scholar 

  14. C. Cano-Sarmiento, D. Téllez-Medina, R. Viveros-Contreras, M. Cornejo-Mazón, C. Figueroa-Hernández, E. García-Armenta, L. Alamilla-Beltrán, H. García, G. Gutiérrez-López, Zeta potential of food matrices. Food Eng. Rev. 10, 113–138 (2018). https://doi.org/10.1007/s12393-018-9176-z

    Article  Google Scholar 

  15. K.-O. Choi, N. Aditya, S. Ko, Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. Food chem. 147, 239–244 (2014). https://doi.org/10.1016/j.foodchem.2013.09.095

    Article  CAS  PubMed  Google Scholar 

  16. L. Behlau, G. Widmann, Collection applications thermal analysis. Food Mettler Tolledo, 15–16 (2008)

  17. B. Dery, L. Zaixiang, Scanning electron microscopy (SEM) as an effective tool for determining the morphology and mechanism of action of functional ingredients. Food Rev. Int. 39, 2007–2026 (2023). https://doi.org/10.1080/87559129.2021.1939368

    Article  CAS  Google Scholar 

  18. M. Raei, G. Rajabzadeh, S. Zibaei, S.M. Jafari, A.M. Sani, Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release. Int. J. Biol. Macromol. 79, 669–673 (2015). https://doi.org/10.1016/j.ijbiomac.2015.05.048

    Article  CAS  PubMed  Google Scholar 

  19. K. Sarabandi, S.M. Jafari, Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: stability during spray-drying. Food Chem. 310, 125951 (2020). https://doi.org/10.1016/j.foodchem.2019.125951

    Article  CAS  PubMed  Google Scholar 

  20. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley, New York, 2016)

    Google Scholar 

  21. M. Yolmeh, S.M. Jafari, Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 10, 413–433 (2017). https://doi.org/10.1007/s11947-016-1855-2

    Article  CAS  Google Scholar 

  22. J.S. Mounsey, B.T. O’Kennedy, P.M. Kelly, Influence of transglutaminase treatment on properties of micellar casein and products made therefrom. Lait 85, 405–418 (2005). https://doi.org/10.1051/lait:2005028

    Article  CAS  Google Scholar 

  23. M.E. Steffolani, P.D. Ribotta, G.T. Pérez, A.E. León, Effect of glucose oxidase, transglutaminase, and pentosanase on wheat proteins: relationship with dough properties and bread-making quality. J. Cereal Sci. 51, 366–373 (2010). https://doi.org/10.1016/j.jcs.2010.01.010

    Article  CAS  Google Scholar 

  24. D.J. Burgess, E. Duffy, F. Etzler, A.J. Hickey, Particle size analysis: AAPS workshop report, cosponsored by the Food and Drug Administration and the United States Pharmacopeia. AAPS J. 6, 23–34 (2004). https://doi.org/10.1208/aapsj060320

    Article  PubMed Central  Google Scholar 

  25. A.R. Jambrak, T.J. Mason, V. Lelas, L. Paniwnyk, Z. Herceg, Effect of ultrasound treatment on particle size and molecular weight of whey proteins. J. Food Eng. 121, 15–23 (2014). https://doi.org/10.1016/j.jfoodeng.2013.08.012

    Article  CAS  Google Scholar 

  26. Y. Luo, B. Zhang, M. Whent, L.L. Yu, Q. Wang, Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids Surf. B 85, 145–152 (2011). https://doi.org/10.1016/j.colsurfb.2011.02.020

    Article  CAS  Google Scholar 

  27. X. Shen, T. Fang, F. Gao, M. Guo, Effects of ultrasound treatment on physicochemical and emulsifying properties of whey proteins pre-and post-thermal aggregation. Food Hydrocoll. 63, 668–676 (2017). https://doi.org/10.1016/j.foodhyd.2016.10.003

    Article  CAS  Google Scholar 

  28. Z. Teng, Y. Li, Q. Wang, Insight into curcumin-loaded β-lactoglobulin nanoparticles: incorporation, particle disintegration, and releasing profiles. J. Agric. Food Chem. 62, 8837–8847 (2014). https://doi.org/10.1021/jf503199g

    Article  CAS  PubMed  Google Scholar 

  29. S. Tamnak, H. Mirhosseini, C.P. Tan, H.M. Ghazali, K. Muhammad, Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocoll. 56, 405–416 (2016). https://doi.org/10.1016/j.foodhyd.2015.12.033

    Article  CAS  Google Scholar 

  30. A.B. Khatkar, A. Kaur, S.K. Khatkar, N. Mehta, Characterization of heat-stable whey protein: impact of ultrasound on rheological, thermal, structural and morphological properties. Ultrason. Sonochem. 49, 333–342 (2018). https://doi.org/10.1016/j.ultsonch.2018.08.026

    Article  CAS  PubMed  Google Scholar 

  31. J. Chandrapala, B. Zisu, M. Palmer, S. Kentish, M. Ashokkumar, Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 18, 951–957 (2011). https://doi.org/10.1016/j.ultsonch.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  32. C.-H. Tang, Z. Chen, L. Li, X.-Q. Yang, Effects of transglutaminase treatment on the thermal properties of soy protein isolates. Food Res. Int. 39, 704–711 (2006). https://doi.org/10.1016/j.foodres.2006.01.012

    Article  CAS  Google Scholar 

  33. A. Mizuno, M. Mitsuiki, M. Motoki, Effect of transglutaminase treatment on the glass transition of soy protein. J. Agric. Food Chem. 48, 3286–3291 (2000). https://doi.org/10.1021/jf9911500

    Article  CAS  PubMed  Google Scholar 

  34. A. Farahnaky, F. Badii, I.A. Farhat, J.R. Mitchell, S.E. Hill, Enthalpy relaxation of bovine serum albumin and implications for its storage in the glassy state. Biopolym.: Orig. Res. Biomol. 78, 69–77 (2005). https://doi.org/10.1002/bip.20265

    Article  CAS  Google Scholar 

  35. A. Ameri Shahrabi, F. Badii, M. Ehsani, N. Maftoonazad, D. Sarmadizadeh, Functional and thermal properties of chickpea and soy-protein concentrates and isolates. Iran. J. Nutr. Sci Food Tech. 6, 49–58 (2011). http://nsft.sbmu.ac.ir/article-1-547-en.html

  36. A. Quiroga, E.N. Martínez, H. Rogniaux, A. Geairon, M.C. Añón, Globulin-p and 11S-globulin from amaranthus hypochondriacus: are two isoforms of the 11S-globulin. Protein J. 28, 457–467 (2009). https://doi.org/10.1007/s10930-009-9214-z

    Article  CAS  PubMed  Google Scholar 

  37. M.F. Marcone, R.Y. Yada, Structural analysis of globulins isolated from genetically different Amaranthus hybrid lines. Food Chem. 61, 319–326 (1998). https://doi.org/10.1016/S0308-8146(97)00057-5

    Article  CAS  Google Scholar 

  38. L.E. Abugoch, E.N. Martínez, M.C. Añón, Influence of the extracting solvent upon the structural properties of amaranth (Amaranthus hypochondriacus) glutelin. J. Agric. Food chem. 51, 4060–4065 (2003). https://doi.org/10.1021/jf025949e

    Article  CAS  PubMed  Google Scholar 

  39. P. Zhang, T. Hu, S. Feng, Q. Xu, T. Zheng, M. Zhou, X. Chu, X. Huang, X. Lu, S. Pan, Effect of high intensity ultrasound on transglutaminase-catalyzed soy protein isolate cold set gel. Ultrason. Sonochem. 29, 380–387 (2016). https://doi.org/10.1016/j.ultsonch.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  40. E. Choi, S. Kwok, C.Y. Ma, Conformational study of SPI treated with ultrasound, in IFT Annual Meeting & Food Expo (2009)

  41. D.J. McClements, Recent developments in encapsulation and release of functional food ingredients: delivery by design. Curr. Opin. Food Sci. 23, 80–84 (2018). https://doi.org/10.1016/j.cofs.2018.06.008

    Article  Google Scholar 

  42. A. Vera, C. Tapia, L. Abugoch, Effect of high-intensity ultrasound treatment in combination with transglutaminase and nanoparticles on structural, mechanical, and physicochemical properties of quinoa proteins/chitosan edible films. Int. J. Biol. Macromol. 144, 536–543 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.120

    Article  CAS  PubMed  Google Scholar 

  43. L. Zhang, Z. Pan, K. Shen, X. Cai, B. Zheng, S. Miao, Influence of ultrasound-assisted alkali treatment on the structural properties and functionalities of rice protein. J. Cereal Sci. 79, 204–209 (2018). https://doi.org/10.1016/j.jcs.2017.10.013

    Article  CAS  Google Scholar 

  44. M. Cortez-Trejo, S. Mendoza, G. Loarca-Piña, J. Figueroa-Cárdenas, Physicochemical characterization of protein isolates of amaranth and common bean and a study of their compatibility with xanthan gum. Int. J. Biol. Macromol. 166, 861–868 (2021). https://doi.org/10.1016/j.ijbiomac.2020.10.242

    Article  CAS  PubMed  Google Scholar 

  45. F.J. Barba, N. Nikmaram, S. Roohinejad, A. Khelfa, Z. Zhu, M. Koubaa, Bioavailability of glucosinolates and their breakdown products: impact of processing. Front. Nutr. 3, 1–12 (2016). https://doi.org/10.3389/fnut.2016.00024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Islamic Azad University, Azadshahr Branch, Iran for laboratorial support. This work is part of a research project, which was approved by scientific committee of mentioned university, with research code: 162269755.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Fadavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimi, S., Fadavi, A., Sayyed-Alangi, S.Z. et al. Physical and thermal characteristics of amaranth (Amaranthus hypochondriacus) protein nanoparticles affected by ultrasound time and microbial transglutaminase. Food Measure 18, 3391–3404 (2024). https://doi.org/10.1007/s11694-024-02412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02412-1

Keywords

Navigation