Log in

Fabrication of a dual mimetic enzyme sensor based on gold nanoparticles modified with Cu(II)-coordinated methanobactin for gallic acid detection

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Gallic acid (GA) is a bioactive functional ingredient widely used in pharmacology and food. For GA detection, the accuracy and selectivity can be improved from the enzyme based electrochemical sensor. However, due to the defects of natural enzymes, we introduced a dual mimetic enzyme sensor to enhance the catalytic efficiency of the electrodes and mitigate the limitations associated with the high cost of natural enzymes. The construction principle is based on the fact that the methanobactin (Mb) structure has an active center for capturing Cu(II) and the coordinated Mb(CuII) was certificated to have mimetic peroxidase (POD) and polyphenol oxidase (PPO) activities. Gold nanoparticles (AuNPs) and Mb(CuII) were modified onto the surface of the bare gold electrodes (ACE) by stepwise drop-coating. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultraviolet spectroscopy (UV), fourier infrared spectroscopy (FTIR), fluorescence spectrometer (FL) were employed to confirm the successful bonding of Mb(CuII)-AuNPs. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) verified that the addition of Mb(CuII) increased the catalytic rate of the sensor. Electrochemical tests using DPV showed that the Mb(CuII)/AuNPs/ACE sensor exhibited a high oxidation peak when GA was added. The peak potential was 0.79 ± 0.05 V. The limit of detection (LOD) was 0.27 μM (S/N = 3) for GA concentrations ranging from 1 to 1000 μM. The recoveries were determined for real samples and ranged from 96.53 to 102.54%, and high selectivity of sensor to GA was verified by anti-interference experiments. These results suggest that this work provides a new way for detecting GA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials. Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. J. Chen, Y. Chen, S. Li, J. Yang, J. Dong, In-situ growth of cerium-based metal organic framework on multi-walled carbon nanotubes for electrochemical detection of gallic acid. Coll. Surface A 650, 129318 (2022)

    Article  CAS  Google Scholar 

  2. Y. Jiang, J. Pei, Y. Zheng, Y.J. Miao, B.Z. Duan, L.F. Huang, Gallic acid: a potential anti-cancer agent. Chin. J. Integr. Med. 28, 1–11 (2021)

    Google Scholar 

  3. B.C. Variya, A.K. Bakrania, S.S. Patel, Antidiabetic potential of gallic acid from Emblica officinalis: improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine 73, 152906 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. O.V. Bocharova, Electrochemical basis for re-evaluating antioxidant effect of redox substances in foodstuffs. ACS Food Sci. Technol 2(5), 738–750 (2022)

    Article  CAS  Google Scholar 

  5. S. Saeed, S. Aslam, T. Mehmood, R. Naseer, S. Nawaz, H. Mujahid, A. Sultan, Production of gallic acid under solid-state fermentation by utilizing waste from food processing industries. Waste Biomass Valori 12, 155–163 (2021)

    Article  CAS  Google Scholar 

  6. Z. Hao, Q. Zheng, L. **, S. Zhou, H. Chen, X. Liu, C. Lu, Rapid measurement of total polyphenol content in tea by kinetic matching approach on microfluidic paper-based analytical devices. Food Chem. 342, 128368 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. H. Zhao, Y. Liu, F. Li, G. Zhu, M. Guo, J. Han, Q. Ran, Facile synthesis of silicon dioxide nanoparticles decorated multi-walled carbon nanotubes with graphitization and carboxylation for electrochemical detection of gallic acid. Ceram. Int. 49(16), 26289–26301 (2023)

    Article  CAS  Google Scholar 

  8. V. Krishnan, E. Gunasekaran, C. Prabhakaran, P. Kanagavalli, V. Ananth, M. Veerapandian, Electropolymerized methylene blue on graphene oxide framework for the direct voltammetric detection of gallic acid. Mater. Chem. Phys. 295, 127071 (2023)

    Article  CAS  Google Scholar 

  9. F.H. Fernandes, R.S.D.A. Batista, F.D.D. Medeiros, F.S. Santos, A.C. Medeiros, Development of a rapid and simple HPLC-UV method for determination of gallic acid in Schinopsis brasiliensis. Rev. Bras 25, 208–211 (2015)

    CAS  Google Scholar 

  10. H. Qian, W. Jiangcun, C. Yong, S. **anyi, W. Yuyan, F. Zhenying, L. Wenjun, Simultaneous determination of gallic acid and cinnamic acid content in rhubarb by HPLC. Plant Dis. Pests 11(3), 31 (2020)

    Google Scholar 

  11. R.D.S. Silveira, G.C. Leal, T.R.D. Molin, H. Faccin, L.A. Gobo, G.D.D. Silveira, C. Viana, Determination of phenolic and triterpenic compounds in Jatropha gossypiifolia L. by Ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS). Braz. J. Pharm. Sci. (2020). https://doi.org/10.1590/s2175-97902019000417262

    Article  Google Scholar 

  12. X. Wang, J. Wang, N. Yang, Flow injection chemiluminescent detection of gallic acid in olive fruits. Food chem 105(1), 340–345 (2007)

    Article  CAS  Google Scholar 

  13. B.G.T. Corominas, J.G. Mateo, L.L. Zamora, J.M. Calatayud, Determination of tannic acid by direct chemiluminescence in a FIA assembly. Talanta 58(6), 1243–1251 (2002)

    Article  Google Scholar 

  14. W. Phakthong, B. Liawruangrath, S. Liawruangrath, Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization. Talanta 130, 577–584 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. P. Alam, P. Alam, M.A. Sharaf-Eldin, M.H. Alqarni, Simultaneous identification of rutin, chlorogenic acid and gallic acid in Moringa oleifera by densitometric high-performance thin-layer chromatography method. Jpc-J Planar Chromat 33, 27–32 (2020)

    Article  CAS  Google Scholar 

  16. A. Asfaram, M. Ghaedi, K. Dashtian, Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV-vis detection and optimization study. Ultrason. Sonochem. 234(7), 561–570 (2017)

    Article  Google Scholar 

  17. L. Chen, J. Yang, W. Chen, S. Sun, H. Tang, Y. Li, Perovskite mesoporous LaFeO3 with peroxidase-like activity for colorimetric detection of gallic acid. Sensor Actuat B-Chem 321, 128642 (2020)

    Article  CAS  Google Scholar 

  18. H.X. Liu, Q. Liu, X.Y. Zhang, Y.F. Huan, L.T. Wang, K.Q. Ye, H.J. Yue, Determination of gallic acid content in Terminalia by capillary zone electrophoresis. Advanced Materials Research 850, 1275–1278 (2014)

    Google Scholar 

  19. M. Chen, H. Lv, X. Li, Z. Tian, X. Ma, Determination of gallic acid in tea by a graphene modified glassy carbon electrode. Int J Electrochem Sc 14(5), 4852–4860 (2019)

    Article  CAS  Google Scholar 

  20. J. Su, X. Su, Determination of tartrazine in sports drinks by a disposable electrochemical sensor modified with Co2O3. Food Measure (2023). https://doi.org/10.1007/s11694-023-02094-1

    Article  Google Scholar 

  21. L. Dou, H. Han, B. Yang, C. Lin, S. Pan, Q. Li, J. Li, Rapid determination of quercetin and caffeic acid in honeysuckle tea by high efficiency electrochemical sensor. Food Measure (2023). https://doi.org/10.1007/s11694-023-02095-0

    Article  Google Scholar 

  22. N. Ermis, N. Zare, R. Darabi, M. Alizadeh, F. Karimi, J. Singh, M. Baghayeri, Recent advantage in electrochemical monitoring of gallic acid and kojic acid: a new perspective in food science. J Food Measure (2023). https://doi.org/10.1007/s11694-023-01881-0

    Article  Google Scholar 

  23. F.X. Qin, T.J. Hu, L.X. You, W. Chen, D.S. Jia, N.N. Hu, W.H. Qi, Electrochemical detection of gallic acid in green tea using molecularly imprinted polymers on TiO2@CNTs nanocomposite modified glassy carbon electrode. Int. J. Electrochem. Sci. 17(4), 220426 (2022)

    Article  CAS  Google Scholar 

  24. J. Tashkhourian, S.F. Nami-Ana, A sensitive electrochemical sensor for determination of gallic acid based on SiO2 nanoparticle modified carbon paste electrode. Mater. Sci. Eng. C 52, 103–110 (2015)

    Article  CAS  Google Scholar 

  25. A. Hyder, J.A. Buledi, R. Memon, A. Qureshi, J.H. Niazi, A.R. Solangi, K.H. Thebo, Modified electrochemical sensor via supramolecular structural functionalized graphene oxide for ultra-sensitive detection of gallic acid. Diam. Relat. Mater. 139, 110357 (2023)

    Article  CAS  Google Scholar 

  26. S.R. Yousef, H.A. Alshamsi, O. Amiri, M.S. Niasari, J. Mol. Liq. 337, 116405 (2021)

    Article  Google Scholar 

  27. S.R. Yousefia, O. Amirib, M.S. Niasari, Ultrasonics - Sonoche 58, 104619 (2019)

    Article  Google Scholar 

  28. J. Luo, C. Jiang, J. Zhao, L. Zhao, P. Zheng, J. Fang, Hierarchical tungsten-doped bimetallic selenides nanosheets arrays/nickel foam composite electrode as efficient gallic acid electrochemical sensor. Microchim. Acta 190(4), 165 (2023)

    Article  CAS  Google Scholar 

  29. M. Guo, J. Han, Q. Ran, M. Zhao, Y. Liu, G. Zhu, H. Zhao, Multifunctional integrated electrochemical sensing platform based on mesoporous silica nanoparticles decorated single-wall carbon nanotubes network for sensitive determination of gallic acid. Ceram Internat 49(23), 37549–37560 (2023)

    Article  CAS  Google Scholar 

  30. H. Zhao, M. Guo, F. Li, Y. Zhou, G. Zhu, Y. Liu, V. Dubovyk, Fabrication of gallic acid electrochemical sensor based on interconnected Super-P carbon black@mesoporous silica nanocomposite modified glassy carbon electrode. J. Mater. Res. Technol. 24, 2100–2112 (2023)

    Article  CAS  Google Scholar 

  31. H. Shi, L. Fu, F. Chen, S. Zhao, G. Lai, Preparation of highly sensitive electrochemical sensor for detection of nitrite in drinking water samples. Environ. Res. 209, 112747 (2022)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Xu, Y. Lu, P. Zhang, Y. Wang, Y. Zheng, L. Fu, H. Zhang, C.T. Lin, A. Yu, Infrageneric phylogenetics investigation of Chimonanthus based on electroactive compound profiles. Bioelectrochem 133, 107455 (2020)

    Article  CAS  Google Scholar 

  33. W. Ye, Y. Zheng, P. Zhang, B. Fan, Y. Li, L. Fu, Identification of Species in Lycoris spp. from stigmatic exudate using electrochemical fingerprints. Int. J. Electrochem. Sci. 16, 211041 (2021)

    Article  CAS  Google Scholar 

  34. Y. Zheng, X. Li, F. Han, L. Fu, J. Sun, Identification of foliage plants Heuchera based on electrochemical profile of active molecules. Int. J. Electrochem. Sci. 16, 211136 (2021)

    Article  CAS  Google Scholar 

  35. V. Escobar, N. Scaramozzino, J. Vidic, A. Buhot, R. Mathey, C. Chaix, Y. Hou, Recent advances on peptide-based biosensors and electronic noses for foodborne pathogen detection. Biosensors 13(2), 25 (2023)

    Article  Google Scholar 

  36. X. Lin, Y. Zhou, Z. Lei, R. Chen, W. Chen, X. Meng, Y. Li, Facile electrochemical biosensing platform based on laser induced graphene/laccase electrode for the effective determination of gallic acid. Processes 11(7), 2048 (2023)

    Article  CAS  Google Scholar 

  37. M. Nandhakumar, D.T. Thangaian, N. Kasi, Topical progress of gold nanoparticles towards diverse metal ion sensing through optical spectrometry and electrochemical techniques-A short review. J Mater Res Technol 22, 1185–1209 (2023)

    Article  CAS  Google Scholar 

  38. S. Ali, X. Chen, W. Shi, G. Huang, L.M. Yuan, L. Meng, X. Chen, Recent advances in silver and gold nanoparticles-based colorimetric sensors for heavy metal ions detection: a review. Crit. Rev. Anal. Chem. 53(3), 718–750 (2023)

    Article  CAS  PubMed  Google Scholar 

  39. J. Kwiczak-Yiğitbaşı, Ö. Laçin, M. Demir, R.E. Ahan, U.Ö.Ş Şeker, B. Baytekin, A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites via ball milling of cellulose. Green Chem. 22(2), 455–464 (2020)

    Article  Google Scholar 

  40. W. Zhang, X. Li, X. Hu, C. Li, S. Liu, J. Ma, Z. Wang, A novel electrochemical sensor based on an Fe–N–C/AuNP nanohybrid for rapid and sensitive gallic acid detection. New J. Chem. 47(13), 6448–6456 (2023)

    Article  CAS  Google Scholar 

  41. B.B. Oliveira, D. Ferreira, A.R. Fernandes, P.V. Baptista, Engineering gold nanoparticles for molecular diagnostics and biosensing. Wires Nanomed Nanobi 15(1), e1836 (2023)

    Article  CAS  Google Scholar 

  42. Y. Mao, Y. Fan, R. Yang, Y. Wang, Q. Li, M. Dang, X. Zhang, A highly sensitive electrochemical sensor derived from peptide amphiphilic inspired self-assembled, ordered gold nanoparticles for determination of 22 β-lactams. Electrochim. Acta (2023). https://doi.org/10.1016/j.electacta.2023.142669

    Article  Google Scholar 

  43. M. Sethi, M.R. Knecht, Experimental studies on the interactions between Au nanoparticles and amino acids: bio-based formation of branched linear chains. ACS Appl. Mater. Interfaces 1, 1270–1278 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. M. Sethi, M.R. Knecht, Understanding the mechanism of amino acid-based Au nanoparticle chain formation. Langmuir 26, 9860–9874 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. S.T. Wang, Y. Lin, N. Todorova, Y. Xu, M. Mazo, S. Rana, V. Leonardo, N. Amdursky, C.D. Spicer, B.D. Alexander, A.A. Edwards, S.J. Matthews, I. Yarovsky, M.M. Stevens, Facet-dependent interactions of islet amyloid polypeptide with gold nanoparticles: implications for fibril formation and peptide-induced lipid membrane disruption. Chem. Mater. 29, 1550–1560 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M.A. Nguyen, Z.E. Hughes, Y. Liu, Y. Li, M.T. Swihart, M.R. Knecht, T.R. Walsh, Peptide-mediated growth and dispersion of Au nanoparticles in water via sequence engineering. J. Phys. Chem. C 122, 11532–11542 (2018)

    Article  CAS  Google Scholar 

  47. N. Liu, S. Zhao, Y. Li, M. Li, Y. Guo, X. Luo, Gold nanoparticles-decorated peptide hydrogel for antifouling electrochemical dopamine determination. Microchim. Acta 190(5), 199 (2023)

    Article  CAS  Google Scholar 

  48. H.J. Yang, M.W. Kim, C.V. Raju, C.H. Cho, T.J. Park, J.P. Park, Highly sensitive and label-free electrochemical detection of C-reactive protein on a peptide receptor-gold nanoparticle-black phosphorous nanocomposite modified electrode. Biosens. Bioelectron. 234, 115382 (2023)

    Article  CAS  PubMed  Google Scholar 

  49. G. Liu, Y. Li, M. Liu, J. Cheng, S. Yang, F. Gao, L. Liu, Overview on peptide-based electrochemical biosensors. Int. J. Electrochem. Sci. (2023). https://doi.org/10.1016/j.ijoes.2023.100395

    Article  PubMed Central  Google Scholar 

  50. P.S. Sfragano, G. Moro, F. Polo, I. Palchetti, The role of peptides in the design of electrochemical biosensors for clinical diagnostics. Biosensors 11(8), 246 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. L. Yuan, L. Liu, Peptide-based electrochemical biosensing. Sensor Actuat B-Chem 344, 130232 (2021)

    Article  CAS  Google Scholar 

  52. Y. Saito, A. Kanetsuna, H. Okuda, M. Mifune, J. Odo, Y. Tanaka, A sensitive spectrophotometric method for the determination of human serum albumin with chrome-azurol S aluminium chelate. Chem. Pharm. Bull. 34(2), 746–750 (1986)

    Article  CAS  Google Scholar 

  53. J.D. Semrau, A.A. DiSpirito, P.K. Obulisamy, C.S. Kang-Yun, Methanobactin from methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol. Lett. 367(5), fnaa045 (2020)

    Article  CAS  PubMed  Google Scholar 

  54. N.B. Muhamad, W.M. Khairul, F. Yusoff, Synthesis and characterization of poly(3,4-ethylenedioxythiopHene) functionalized graphene with gold nanoparticles as a potential oxygen reduction electrocatalyst. J. Solid State Chem. 275(4), 30–37 (2019)

    Article  CAS  Google Scholar 

  55. L.A. Behling, S.C. Hartsel, D.E. Lewis, A.A. DiSpirito, D.W. Choi, L.R. Masterson, W.H. Gallagher, NMR, mass spectrometry and chemical evidence reveal a different chemical structure for methanobactin that contains oxazolone rings. J. Am. Chem. Soc. 130(38), 12604–12605 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. Kanetsuna, H. Okuka, M. Mifune, J. Odo, Y.A. Tanaka, Sensitive spectrophotometric method for the determination of human serum albumin with chrome-azurol S aluminium chelate. Chem. Pharm. Bull. 34, 746–750 (1986)

    Article  Google Scholar 

  57. W. Wei, S.G. Wu, Study of electrooxidation behavior of nitrite on gold nanoparticles/graphitizing carbon felt electrode and its analytical application. Chinese J. Anal. Chem. 47(2), 19014–19020 (2019)

    Article  Google Scholar 

  58. J. Xu, J. Du, C. **g, Y. Zhang, J. Cui, Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect. ACS Appl. Mater. Interfaces 6(9), 6891–6897 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. K. Murugesan, I.H. Nam, Y.M. Kim, Y.S. Chang, Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb Tech 40(7), 1662–1672 (2007)

    Article  CAS  Google Scholar 

  60. M. Li, K. Bai, Y. Zhang, Sensitive electrochemical detection of do** agent metoprolol between athletes via copper phthalocyanine-modified graphitic carbon nitride electrode: a versatile approach for do** surveillance in food products and biological fluids. J. Food Meas. Charact. (2023). https://doi.org/10.1007/s11694-023-02308-6

    Article  Google Scholar 

  61. S. Zhang, R. Karthikeyan, S.D. Fernando, Low-temperature biological activation of methane: structure, function and molecular interactions of soluble and particulate methane monooxygenases. Rev. Environ. Sci. Bio-technol. 16(4), 1–13 (2017)

    Google Scholar 

  62. J.Y. **n, C.Y. Li, S. Zhang, Y. Wang, W. Zhang, C.G. Xu, Cu-induced assembly of methanobactin-modified gold nanoparticles and its peroxidase mimic activity. IET Nanobiotechnol. 12(7), 915–921 (2018)

    Article  Google Scholar 

  63. H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. B. Zhou, X. Sheng, H. **e, S. Zhou, L. Huang, Z. Zhang, M. Zhong, Molecularly imprinted electrochemistry sensor based on AuNPs/RGO modification for highly sensitive and selective detection of nitrofurazone. Food Anal. Meth. (2023). https://doi.org/10.1007/s12161-023-02447-y

    Article  Google Scholar 

  65. B. Zhou, H. **e, S. Zhou, X. Sheng, L. Chen, M. Zhong, Construction of AuNPs/reduced graphene nanoribbons co-modified molecularly imprinted electrochemical sensor for the detection of zearalenone. Food Chem. 423, 136294 (2023)

    Article  CAS  PubMed  Google Scholar 

  66. S.H.M. Taib, K. Shameli, P.M. Nia, M. Etesami, M. Miyake, R.R. Ali, Z. Izadiyan, Electrooxidation of nitrite based on green synthesis of gold nanoparticles using Hibiscus sabdariffa leaves. J Taiwan Inst Chem E 95, 616–626 (2019)

    Article  Google Scholar 

  67. S.J. Huo, J.M. He, L.H. Chen, J.H. Fang, Adsorption configuration of sodium 2-quinoxalinecarboxylate on iron substrate: investigation by in situ SERS, XPS and theoretical calculation. Spectrochim. Acta A 156, 123–130 (2016)

    Article  CAS  Google Scholar 

  68. Y. Gan, T. Liang, Q. Hu, L. Zhong, X. Wang, H. Wan, P. Wang, In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system. Talanta 208, 120231 (2020)

    Article  CAS  PubMed  Google Scholar 

  69. W. **e, Y. Huang, W. Yun, D. Tang, H. Zhang, C. Du, W. Zhang, Simple pretreatment and portable UV-Vis Spectrum instrument for the rapid detection of melamine in milk products. J Food Quality 38(4), 297–304 (2015)

    Article  CAS  Google Scholar 

  70. L.H. Mao, X.Y. Li, B.X. Li, Effect of polyphenol compounds on luminol-AgNO3-gold nanoparticles chemical luminescence system. Chinese J. Luminescence 038(006), 814–819 (2017)

    Article  Google Scholar 

  71. T. Zhong, Q. Guo, Z. Yin, X. Zhu, R. Liu, A. Liu, S. Huang, Polyphenol oxidase/gold nanoparticles/mesoporous carbon-modified electrode as an electrochemical sensing platform for rutin in dark teas. RSC Adv. 9(4), 2152–2155 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Y. Hui, B. Wang, R. Ren, A. Zhao, F. Zhang, S. Song, Y. He, An electrochemical aptasensor based on DNA-AuNPs-HRP nanoprobes and exonuclease-assisted signal amplification for detection of aflatoxin B1. Food Control 109, 106902 (2020)

    Article  CAS  Google Scholar 

  73. T. Hu, M. Zhang, Z. Wang, K. Chen, X. Li, Z. Ni, Layer-by-layer self-assembly of MoS2/PDDA hybrid film in microfluidic chips for ultrasensitive electrochemical immunosensing of alpha-fetoprotein. Microchem. J. 158, 105209 (2020)

    Article  CAS  Google Scholar 

  74. M.I. Prodromidis, A.B. Florou, S.M. Tzouwara-Karayanni, M.I. Karayannis, The importance of surface coverage in the electrochemical study of chemically modified electrodes. Electroanal.: Int. J. Devoted Fundamental Practical Aspects f Electroanal. 12(18), 1498–1501 (2000)

    Article  CAS  Google Scholar 

  75. W.A. Braun, B.C. Horn, L. Hoehne, S. Stülp, M.B. Rosa, M. Hilgemann, Poly (methylene blue)-modified electrode for indirect electrochemical sensing of OH radicals and radical scavengers. Acad Bras Cienc 89, 1381–1389 (2017)

    Article  CAS  Google Scholar 

  76. Z. Mahmoudi, J. Tashkhourian, B. Hemmateenejad, A disposable paper-based microfluidic electrochemical cell equipped with graphite-supported gold nanoparticles modified electrode for gallic acid determination. J. Electroanal. Chem. 920, 116626 (2022)

    Article  CAS  Google Scholar 

  77. R. Madhu, V. Veeramani, S.M. Chen, Fabrication of a novel gold nanospheres/activated carbon nanocomposite for enhanced electrocatalytic activity toward the detection of toxic hydrazine in various water samples. Sensor Actuat B-Chem 204, 382–387 (2014)

    Article  CAS  Google Scholar 

  78. L. Yu, Y. Mao, Y. Gao, L.B. Qu, Sensitive and simple voltammetric detection of Sudan I by using platinum nanoparticle-modified glassy carbon electrode in food samples. Food Anal. Meth. 7, 1179–1185 (2014)

    Article  Google Scholar 

  79. M. Madhusudhana, A.K. Bhakta, Z. Mekhalif, R.J. Mascarenhas, Bismuth-nanoparticles decorated multi-wall-carbon-nanotubes cast-coated on carbon paste electrode; an electrochemical sensor for sensitive determination of gallic acid at neutral pH. Mater. Sci. Energy Technol. 3, 174–182 (2020)

    CAS  Google Scholar 

  80. Y.L. Su, S.H. Cheng, Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film. Anal. Chim. Acta 901, 41–50 (2015)

    Article  CAS  PubMed  Google Scholar 

  81. M. Asnaashariisfahani, H. Karimi-maleh, H. Ahmar, A.A. Ensafi, A.R. Fakhari, M.A. Khalilzadeh, F. Karimi, Novel 8,9-dihydroxy-7-methyl-12 H-benzothiazolo [2,3-b] quinazolin-12-one multiwalled carbon nanotubes paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Anal. Methods 4(10), 3275–3282 (2012)

    Article  CAS  Google Scholar 

  82. S.M. Mugo, W. Lu, Modified stainless steel microneedle electrode for polyphenolics detection. Anal. Bioanal. Chem. 412, 7063–7072 (2020)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Heilongjiang Natural Science Foundation Project (LH2020C063), the Heilongjiang Province “Hundreds and Thousands Million” Engineering Science and Technology Major Special Projects (SC2021ZX04B0019), 2023 Harbin University of Commerce "Young Scientific Research Innovative Talents" Training Program Project(XL0086). Basic scientific research business expenses of colleges and universities in Heilongjiang Province (2023-KYYWF-1054)

Author information

Authors and Affiliations

Authors

Contributions

LC: Investigation, Methodology, Visualization, Writing, review and editing, Supervision, Funding acquisition. JS: Investigation, Methodology, Validation, Visualization, Writing original draft. LW: Investigation, Resources. XL: Methodology, Investigation. XH: Validation. HZ: Validation. TF: Validation.

Corresponding author

Correspondence to Linlin Chen.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3054 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Song, J., Wang, L. et al. Fabrication of a dual mimetic enzyme sensor based on gold nanoparticles modified with Cu(II)-coordinated methanobactin for gallic acid detection. Food Measure 18, 3142–3159 (2024). https://doi.org/10.1007/s11694-024-02392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02392-2

Keywords

Navigation