Log in

Oxidative stability of poppy seed oils: kinetic and thermodynamic analyses under accelerated conditions

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effects of different extraction methods on the oxidative stability and thermal stability of poppy seed oils obtained by using various extraction techniques. For this purpose, supercritical extraction and cold- and hot-pressing methods were employed, and the fatty acid composition, Fourier-transform infrared (FTIR) analysis, and thermal behaviors of the poppyseed oils were determined. Kinetic and thermodynamic parameters (activation energy, enthalpy, entropy, and Gibbs free energy values) were determined by using the Rancimat method at four different temperatures (110 °C, 120 °C, 130 °C, and 140 °C) in order to reveal the effects of environmental factors such as temperature on the oxidative stability of the poppyseed oils analyzed. As a result, the activation energy values calculated through Arrhenius-type plots ranged between 85.95 and 103.56 kJ mol−1, enthalpy values between 82.86 and 100.17 kJ mol−1, and entropy values between − 2.80 and − 41.23 kJ mol−1. Unlike other extraction methods, the spectrum was detected at 1713 cm−1 in poppyseed oil obtained by using the hot-pressing method. Different extraction methods significantly altered the fatty acid composition and oxidative stability of the oils. In conclusion, even though the heat treatment applied during the extraction process increases oil yield, it negatively affects oil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available on request from the corresponding author, Tugba Dedebas.

References

  1. A. Mouahid, C. Dufour, E. Badens, Supercritical CO2 extraction from endemic Corsican plants; comparison of oil composition and extraction yield with hydrodistillation method. J. CO2 Util. 20, 263–273 (2017). https://doi.org/10.1016/j.jcou.2017.06.003

    Article  CAS  Google Scholar 

  2. A. Rai, B. Mohanty, R. Bhargava, Optimization of parameters for supercritical extraction of watermelon seed oil. Sep. Sci. Technol. 53(4), 671–682 (2018). https://doi.org/10.1080/01496395.2017.1397020

    Article  CAS  Google Scholar 

  3. G. Dabrowski, S. Czaplicki, I. Konopka, Composition and quality of poppy (Papaver somniferum L.) seed oil depending on the extraction method. LWT 134, 110167 (2020). https://doi.org/10.1016/j.lwt.2020.110167

    Article  CAS  Google Scholar 

  4. W.V. Vasquez, D.M. Hernández, J.N. del Hierro, D. Martin, M.P. Cano, T. Fornari, Supercritical carbon dioxide extraction of oil and minor lipid compounds of cake byproduct from Brazil nut (Bertholletia excelsa) beverage production. J. Supercrit. Fluids 171, 105188 (2021). https://doi.org/10.1016/j.supflu.2021.105188

    Article  CAS  Google Scholar 

  5. F. Kreps, J. Kyselka, Z. Burčová, Š Schmidt, V. Filip, T. Dubaj, P. Gajdoš, M. Čertíket, Synthesis and analysis of tocopheryl quinone and tocopherol esters with fatty acids in heated sunflower oil. Eur. J. Lipid Sci. Technol. 118(5), 788–802 (2016). https://doi.org/10.1002/ejlt.201500218

    Article  CAS  Google Scholar 

  6. J. Li, J. Liu, X. Sun, Y. Liu, The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis. LWT 96, 51–57 (2018). https://doi.org/10.1016/j.lwt.2018.05.003

    Article  CAS  Google Scholar 

  7. A.P. Singh, F. Fathordoobady, Y. Guo, A. Singh, D.D. Kitts, Antioxidants help favorably regulate the kinetics of lipid peroxidation, polyunsaturated fatty acids degradation and acidic cannabinoids decarboxylation in hempseed oil. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  8. C.P. Tan, Y.B. Che Man, J. Selamat, M.S.A. Yusoff, Application of Arrhenius kinetics to evaluate oxidative stability in vegetable oils by isothermal differential scanning calorimetry. J. Am. Oil Chem. Soc. 78(11), 1133 (2021). https://doi.org/10.1007/s11746-001-0401-1

    Article  Google Scholar 

  9. D. Melo, M. Álvarez-Ortí, M.A. Nunes, L. Espírito Santo, S. Machado, J.E. Pardo, M.B.P.P. Oliveira, Nutritional and chemical characterization of poppy seeds, cold-pressed oil, and cake: poppy cake as a high-fibre and high-protein ingredient for novel food production. Foods 11, 3027 (2022). https://doi.org/10.3390/foods11193027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Z. Aksoylu Özbek, P. Günç Ergönül, Determination of physicochemical properties, fatty acid, tocopherol, sterol, and phenolic profiles of expeller-pressed poppy seed oils from Turkey. J. Am. Oil Chem. Soc. 97, 591–602 (2020). https://doi.org/10.1002/aocs.12337

    Article  CAS  Google Scholar 

  11. L. Wei, D. Wang, J. Sun, X. Wang, Y. Shen, H. Di, Determination of ten long-chain fatty acids in poppy-seed oil using electro-enhanced solid-phase microextraction-GC/MS. Food Anal. Methods 15, 2462–2469 (2022). https://doi.org/10.1007/s12161-022-02301-7

    Article  Google Scholar 

  12. K. Luhmer, N. Schulze-Kaysers, M. Feuereisen, L. Wirth, F. Maretzky, M. Wüst, H. Blum, E. Dörr, R. Pude, Fatty acid composition, tocopherols, volatile compounds, and sensory evaluation of low morphine yielding varieties of poppy (Papaver somniferum L.) seeds and oils. J. Agric. Food Chem. 69, 3439–3451 (2021). https://doi.org/10.1021/acs.jafc.0c07183

    Article  CAS  PubMed  Google Scholar 

  13. K. Ghafoor, M.M. Özcan, F. AL-Juhaimi, E.E. Babiker, G.J. Fadimu, Changes in quality, bioactive compounds, fatty acids, tocopherols, and phenolic composition in oven- and microwave-roasted poppy seeds and oil. LWT 99, 490–496 (2019). https://doi.org/10.1016/j.lwt.2018.10.017

    Article  CAS  Google Scholar 

  14. T. Capar Dursun, T. Dedebas, H. Yalcin, L. Ekici, Extraction method affects seed oil yield, composition, and antioxidant properties of European cranberrybush (Viburnum opulus). Ind. Crops Prod. 168, 113632 (2021). https://doi.org/10.1016/j.indcrop.2021.13.632

    Article  Google Scholar 

  15. L.B. Gu, G.J. Zhang, L. Du, J. Du, K. Qi, X.L. Zhu, X.Y. Zhang, Z.H. Jiang, Comparative study on the extraction of Xanthoceras sorbifolia Bunge (Yellow horn) seed oil using subcritical n-butane, supercritical CO2, and the Soxhlet method. LWT 111, 548–554 (2019). https://doi.org/10.1016/j.lwt.2019.05.078

    Article  CAS  Google Scholar 

  16. G. Cakmak-Arslan, Monitoring of Hazelnut oil quality during thermal processing in comparison with extra virgin olive oil by using ATR-FTIR spectroscopy combined with chemometrics. Spectrochim. Acta A 266, 120461 (2022). https://doi.org/10.1016/j.saa.2021.120461

    Article  CAS  Google Scholar 

  17. T. Dedebas, L. Ekici, O. Sagdic, Chemical characteristics and storage stabilities of different cold-pressed seed oils. J. Food Process. Preserv. 45(2), e15107 (2021). https://doi.org/10.1111/jfpp.15107

    Article  CAS  Google Scholar 

  18. É. Signori Romagnoli, D. Borsato, L.R.C. Silva, L.T. Chendynski, K.G. Angilelli, E.A. Canesin, Kinetic parameters of the oxidation reaction of commercial biodiesel with natural antioxidant additives. Ind. Crops Prod. 125, 59–64 (2018). https://doi.org/10.1016/j.indcrop.2018.08.077

    Article  CAS  Google Scholar 

  19. A.C.A. Veloso, N. Rodrigues, Y. Ouarouer, K. Zaghdoudi, J.A. Pereira, A.M. Peres, A kinetic-thermodynamic study of the effect of the cultivar/total phenols on the oxidative stability of olive oils. J. Am. Oil Chem. Soc. 97, 625–636 (2020). https://doi.org/10.1002/aocs.12351

    Article  CAS  Google Scholar 

  20. J. Jaimez-Ordaz, J.G. Pérez-Flores, A. Castaneda-Ovando, L.G. González-Olivares, J. Anorve-Morga, E. Contreras-Lopez, Kinetic parameters of lipid oxidation in third generation (3G) snacks and its influence on shelf-life. Food Sci. Technol. 39, 136–140 (2019). https://doi.org/10.1590/fst.38917

    Article  Google Scholar 

  21. R. Farhoosh, R. Niazmand, M. Rezaei, M. Sarabi, Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. Eur. J. Lipid Sci. Technol. 110, 587–592 (2008). https://doi.org/10.1002/ejlt.200800004

    Article  CAS  Google Scholar 

  22. M.T. Golmakani, A. Soltani, S.M.H. Hosseini, M. Keramat, Improving the oxidation kinetics of linseed oil using the blending approach. J. Food Process. Preserv. 44(12), e14964 (2020). https://doi.org/10.1111/jfpp.14964

    Article  CAS  Google Scholar 

  23. S. Grebenteuch, C. Kanzler, S. Klaußnitzer, L.W. Kroh, S. Rohn, The formation of methyl ketones during lipid oxidation at elevated temperatures. Molecules 26(4), 1104 (2021). https://doi.org/10.3390/molecules26041104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. Bryś, J. Bryś, A.F. Mellado, S. Głowacki, W. Tulej, E. Ostrowska-Ligeza, P. Koczon, Characterization of oil from roasted hemp seeds using the PDSC and FTIR techniques. J. Therm. Anal. 138, 2781–2786 (2019). https://doi.org/10.1007/s10973-019-08640-8

    Article  CAS  Google Scholar 

  25. E. Choe, D.B. Min, Mechanism and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 5, 169–186 (2006). https://doi.org/10.1111/j.1541-4337.2006.00009.x

    Article  CAS  Google Scholar 

  26. R. Farhoosh, S.-Z. Hoseini-Yazdi, Evolution of oxidative values during kinetic studies on olive oil oxidation in the Rancimat test. J. Am. Oil Chem. Soc. 91(2), 281–293 (2014). https://doi.org/10.1007/s11746-013-2368-z

    Article  CAS  Google Scholar 

  27. E. Symoniuk, K. Ratusz, K. Krygier, Comparison of the oxidative stability of cold-pressed rapeseed oil using Pressure Differential Scanning Calorimetry and Rancimat methods. Eur. J. Lipid Sci. Technol. 119, 1600182 (2017)

    Article  Google Scholar 

  28. E. Elhussein, M. Bilgin, O. Şahin, Oxidative stability of sesame oil extracted from the seeds with different origins: kinetic and thermodynamic studies under accelerated conditions. J. Food Process Eng. 41(8), e12878 (2018). https://doi.org/10.1111/jfpe.12878

    Article  CAS  Google Scholar 

  29. Ö. Gülmez, S. Şahin, Evaluation of oxidative stability in hazelnut oil treated with several antioxidants: kinetics and thermodynamics studies. LWT 111, 478–483 (2019). https://doi.org/10.1016/j.lwt.2019.05.077

    Article  CAS  Google Scholar 

  30. T. Aktar, E. Adal, Determining the Arrhenius kinetics of avocado oil: oxidative stability under Rancimat test conditions. Foods 8, 236 (2019). https://doi.org/10.3390/foods8070236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Z. Cigeroğlu, S. Şahin, E.A. Kurtulbaş, comparative study of lipid oxidation in garlic oil (Allium sativum L.): an accelerated oxidation. J. Food Process. Preserv. 46, e16874 (2022). https://doi.org/10.1111/jfpp.16874

    Article  CAS  Google Scholar 

  32. A. Dini, S.K. Falahati-pour, H. Hashemipour, Oxidation kinetic studies of virgin and solvent extracted pistachio oil under Rancimat test conditions. J. Food Meas. Charact. 17, 653–663 (2023). https://doi.org/10.1007/s11694-022-01633-6

    Article  Google Scholar 

  33. A.M. Piedrahita, J. Peñaloza, A. Cogollo, B.A. Rojano, Kinetic study of the oxidative degradation of choibá oil (Dipteryx oleifera Benth.) with addition of rosemary extract (Rosmarinus officinalis L.). Food Nutr. Sci. 6, 466–479 (2015). https://doi.org/10.4236/fns.2015.65048

    Article  CAS  Google Scholar 

  34. M. Abdul-Hammed, A.O. Jaji, S.A. Adegboyega, Comparative studies of thermophysical and physicochemical properties of shea butter prepared from cold press and solvent extraction methods. J. King Saud Univ. Sci. 32, 2343–2348 (2020). https://doi.org/10.1016/j.jksus.2020.03.012

    Article  Google Scholar 

  35. S. Şahin, Z. Ciğeroğlu, E. Kurtulbaş, A.G. Pekel, K. İbibik, Kinetics and thermodynamics evaluation of oxidative stability in Oleum hyperici: a comparative study. J. Pharm. Biomed. Anal. 183, 113148 (2020). https://doi.org/10.1016/j.jpba.2020.113148

    Article  CAS  PubMed  Google Scholar 

  36. H. Ciemniewska-Żytkiewicz, K. Ratusz, J. Bryś, M. Reder, P. Koczoń, Determination of the oxidative stability of hazelnut oils by PDSC and Rancimat methods. J. Therm. Anal. 118(2), 875–881 (2014). https://doi.org/10.1007/s10973-014-3861-9

    Article  CAS  Google Scholar 

  37. G. Litwinienko, A. Daniluk, T. Kasprzycka-Guttman, Study on autoxidation kinetics of fats by differential scanning calorimetry. 1. Saturated C12–C18 fatty acids and their esters. Ind. Eng. Chem. Res. 39(1), 7–12 (2000). https://doi.org/10.1021/ie9905512

    Article  CAS  Google Scholar 

  38. R.A. Farhoosh, Kinetic approach to evaluate the structure-based performance of antioxidants during lipid oxidation. J. Food Sci. 83(1), 101–107 (2018). https://doi.org/10.1111/1750-3841.13993

    Article  CAS  PubMed  Google Scholar 

  39. P. Sivakumar, K.S. Parthiban, P. Sivakumar, M. Vinoba, S. Renganathan, Optimization of extraction process and kinetics of Sterculia foetida seed oil and its process augmentation for biodiesel production. Ind. Eng. Chem. Res. 51(26), 8992–8998 (2012). https://doi.org/10.1021/ie300882t

    Article  CAS  Google Scholar 

  40. L.S. de Sousa, M.A.S. Garcia, E.C.P. Santos, J. do Nascimento, S.A.G. de Castro, C.V.R. de Moura, E.M. de Moura, Study of the kinetic and thermodynamic parameters of the oxidative degradation process of biodiesel by the action of antioxidants using the Rancimat and PetroOXY methods. Fuel 238, 198–207 (2019). https://doi.org/10.1016/j.fuel.2018.10.082

    Article  CAS  Google Scholar 

  41. E. Ostrowska-Ligeza, K. Dolatowska-Żebrowska, M. Wirkowska-Wojdyła, J. Bryś, A. Górska, Comparison of thermal characteristics and fatty acids composition in raw and roasted cocoa beans from Peru (Criollo) and Ecuador (Forastero). Appl. Sci. 11, 2698 (2021). https://doi.org/10.3390/app11062698

    Article  CAS  Google Scholar 

  42. B. Hu, X. **, H. Li, Y. Qin, C. Li, Z. Zhang, Y. Liu, Q. Zhang, A. Liu, S. Liu, Q. Luo, A comparison of extraction yield, quality and thermal properties from Sapindus mukorossi seed oil between microwave assisted extraction and Soxhlet extraction. Ind. Crops Prod. 161, 113185 (2021). https://doi.org/10.1016/j.indcrop.2020.113185

    Article  CAS  Google Scholar 

  43. G. Budryn, E. Nebesny, D. Żyżelewicz, J. Oracz, K. Mikiewicz, J. Rosicka-Kaczmarek, Influence of roasting conditions on fatty acids and oxidative changes of Robusta coffee oil. Eur. J. Lipid Sci. Technol. 114(9), 1052–1061 (2012). https://doi.org/10.1002/ejlt.20110324

    Article  CAS  Google Scholar 

  44. G.L. Teixeira, L.G. Maciel, S. Mazzutti, C.B. Gonçalves, S.R.S. Ferreira, J.M. Block, Composition, thermal behavior and antioxidant activity of pracaxi (Pentaclethra macroloba) seed oil obtained by supercritical CO2. Biocatal. Agric. Biotechnol. 24, 101521 (2020). https://doi.org/10.1016/j.bcab.2020.101521

    Article  Google Scholar 

  45. N. Aktaş, T. Uzlaşır, Y.E. Tunçil, Pre-roasting treatments significantly impact thermal and kinetic characteristics of pumpkin seed oil. Thermochim. Acta 669, 109–115 (2018). https://doi.org/10.1016/j.tca.2018.09.012

    Article  CAS  Google Scholar 

  46. Y. Zhou, Y. Cui, C. Wang, F. Yang, W. Yao, H. Yu, Y. Guo, Y. **e, Rapid and accurate monitoring and modeling analysis of eight kinds of nut oils during oil oxidation process based on Fourier transform infrared spectroscopy. Food Control 130, 108294 (2021). https://doi.org/10.1016/j.foodcont.2021.108294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugba Dedebas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedebas, T. Oxidative stability of poppy seed oils: kinetic and thermodynamic analyses under accelerated conditions. Food Measure 18, 1969–1979 (2024). https://doi.org/10.1007/s11694-023-02323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02323-7

Keywords

Navigation