Log in

Application of non-linear curve-fitting to develop dispersive liquid–liquid microextraction followed by HPTLC for determination of milk-surfactant adulteration

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Dispersive liquid–liquid microextraction (DLLME) in combination with high-performance thin layer chromatography (HPTLC) is proposed as a green, and reliable technique for simultaneous determination of sodium dodecylbenzene sulfate (SDBS) and sodium dodecyl sulfate (SDS) as milk adulterations. The surfactant’s models were prepared in different concentration ranges (100–400 µg ml−1). At first, in DLLME procedure, the extraction conditions of anionic surfactants from milk were optimized by using central composite design (CCD). To obtain this purpose, volume of extraction solvent, speed of centrifuge and time of extraction were considered as effective factors. The proposed method needed only 5 ml of sample, and 500 µl of chloroform as microextraction solvent. Next, milk samples were analyzed by HPTLC. Subsequently HPTLC images were digitized and non-linear curve-fitting was implemented to the digitized measuring points chromatogram for elimination of random fluctuation, efficient denoising order to provide the reliable estimations of peak area. The fitted models were assessed by coefficient of determination (R2), adjusted coefficient of determination (Adj R2), sum of squares error (SSE), standard deviation (SD) and root mean square error (RMSE) which were estimated 0.97, 0.96, 0.001, 0.032 and 0.002 respectively. As a result, detection limits (LOD), limit of quantification (LOQ) and R2 for SDS and SDBS were 27, 33 µg ml−1 and 89, 94 µg ml−1 and 0.9932, 0.9917 respectively. The repeatability (RSD%) of the method for seven analyses and the extraction recovery were found to be 2.7–5.7% and 76.4–105.6% and 71–88.9% for SDS and SDBS respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

If requested, data will be made available.

References

  1. L.D. Cassoli, B. Sartori, P.F. Machado, The use of the Fourier transform infrared spectroscopy to determine adulterants in raw milk. Rev. Bras. Zootec. 40, 2591–2596 (2011). https://doi.org/10.1590/S1516-35982011001100042

    Article  Google Scholar 

  2. B.M.A. De Carvalho, L.M. De Carvalho, J.S. Dos Reis Coimbra, L.A. Minim, E. De Souza Barcellos, W.F. Da Silva Júnior, E. Detmann, G.G.P. De Carvalho, Rapid detection of whey in milk powder samples by spectrophotometric and multivariate calibration. Food Chem. 174, 1–7 (2015). https://doi.org/10.1016/j.foodchem.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  3. P. Jaiswal, S.N. Jha, J. Kaur, A. Borah, Detection and quantification of anionic detergent (lissapol) in milk using attenuated total reflectance-Fourier transform infrared spectroscopy. Food Chem. 221, 815–821 (2017). https://doi.org/10.1016/j.foodchem.2016.11.095

    Article  CAS  PubMed  Google Scholar 

  4. Y. Lu, Y. **a, G. Liu, M. Pan, M. Li, N.A. Lee, S. Wang, A review of methods for detecting melamine in food samples. Crit. Rev. Anal. Chem. 47, 51–66 (2017). https://doi.org/10.1080/10408347.2016.1176889

    Article  CAS  PubMed  Google Scholar 

  5. E. Hosseini, J.B. Ghasemi, B. Daraei, G. Asadi, N. Adib, Application of genetic algorithm and multivariate methods for the detection and measurement of milk-surfactant adulteration by attenuated total reflection and near-infrared spectroscopy. J. Sci. Food Agric. (2020). https://doi.org/10.1002/jsfa.10894

    Article  PubMed  Google Scholar 

  6. C. Cavin, G. Cottenet, C. Blancpain, T. Bessaire, N. Frank, P. Zbinden, Food adulteration: from vulnerability assessment to new analytical solutions. Chimia (Aarau) 70, 329–333 (2016). https://doi.org/10.2533/CHIMIA.2016.329

    Article  CAS  PubMed  Google Scholar 

  7. C. Moore, J. Spink, M. Lipp, Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. J. Food Sci. 77, R118–R126 (2012). https://doi.org/10.1111/j.1750-3841.2012.02657.x

    Article  CAS  PubMed  Google Scholar 

  8. S. Oancea, Identification of glycomacropeptide as indicator of milk and dairy drinks adulteration with whey by immunochromatographic assay. Rom. Biotechnol. Lett. 14, 4146–4151 (2009)

    CAS  Google Scholar 

  9. S.N. Jha, T. Matsuoka, Detection of adulterants in milk using near infrared spectroscopy. J. Food Sci. Technol. 41, 313–316 (2004)

    CAS  Google Scholar 

  10. A. Rani, V. Sharma, S. Arora, D. Lal, A. Kumar, A rapid reversed-phase thin layer chromatographic protocol for detection of adulteration in ghee (clarified milk fat) with vegetable oils. J. Food Sci. Technol. 52, 2434–2439 (2015). https://doi.org/10.1007/s13197-013-1208-3

    Article  CAS  PubMed  Google Scholar 

  11. M.S.M.S.F. Acevedo, M.J.A. Lima, C.F. Nascimento, F.R.P. Rocha, A green and cost-effective procedure for determination of anionic surfactants in milk with liquid-liquid microextraction and smartphone-based photometric detection. Microchem. J. 143, 259–263 (2018). https://doi.org/10.1016/j.microc.2018.08.002

    Article  CAS  Google Scholar 

  12. M. Ago, K. Ago, Y. Orihara, M. Ogata, A case of death associated with ingestion of liquid windshield-washer detergent, in Legal Medicine (Elsevier, 2003). https://doi.org/10.1016/S1344-6223(02)00095-0

  13. S. Damodaran, K.L. Parkin, Fennema’s Food Chemistry, 5th edn. (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9781315372914

    Book  Google Scholar 

  14. M.M. Paradkar, R.S. Singhal, P.R. Kulkarni, An approach to the detection of synthetic milk in dairy milk: 2. Detection of detergents. Int. J. Dairy Technol. 53, 92–95 (2000). https://doi.org/10.1111/j.1471-0307.2000.tb02667.x

    Article  CAS  Google Scholar 

  15. M. Tay, G. Fang, P.L. Chia, S.F.Y. Li, Rapid screening for detection and differentiation of detergent powder adulteration in infant milk formula by LC-MS. Forensic Sci. Int. 232, 32–39 (2013). https://doi.org/10.1016/j.forsciint.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  16. A.K. Barui, R. Sharma, Y.S. Rajput, S. Singh, A rapid paper chromatographic method for detection of anionic detergent in milk. J. Food Sci. Technol. 50, 826–829 (2013). https://doi.org/10.1007/s13197-013-0934-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. P. Kumar, P. Kumar, S. Manhas, N.K. Navani, A simple method for detection of anionic detergents in milk using unmodified gold nanoparticles. Sens. Actuators B 233, 157–161 (2016). https://doi.org/10.1016/j.snb.2016.04.066

    Article  CAS  Google Scholar 

  18. E. Hosseini, J.B. Ghasemi, B. Daraei, G. Asadi, N. Adib, Near-infrared spectroscopy and machine learning-based classification and calibration methods in detection and measurement of anionic surfactant in milk. J. Food Compos. Anal. (2021). https://doi.org/10.1016/j.jfca.2021.104170

    Article  Google Scholar 

  19. A. Sadat, P. Mustajab, I.A. Khan, Determining the adulteration of natural milk with synthetic milk using ac conductance measurement. J. Food Eng. 77, 472–477 (2006). https://doi.org/10.1016/j.jfoodeng.2005.06.062

    Article  CAS  Google Scholar 

  20. M. Tohidi, M. Ghasemi-Varnamkhasti, V. Ghafarinia, S. Saeid Mohtasebi, M. Bonyadian, Identification of trace amounts of detergent powder in raw milk using a customized low-cost artificial olfactory system: a novel method. Measurement 124, 120–129 (2018). https://doi.org/10.1016/j.measurement.2018.04.006

    Article  Google Scholar 

  21. A. Mohammad, Qasimullah, M. Khan, R. Mobin, Thin-layer chromatography in the analysis of surfactants: at a glance. J. Liq. Chromatogr. Relat. Technol. 40, 863–871 (2017). https://doi.org/10.1080/10826076.2017.1377731

    Article  CAS  Google Scholar 

  22. ISO—ISO 7875-1:1996—water quality—determination of surfactants—part 1: determination of anionic surfactants by measurement of the methylene blue index (MBAS) (1996). https://www.iso.org/standard/24784.html. Accessed 1 Jan 2023

  23. M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A 1116, 1–9 (2006). https://doi.org/10.1016/j.chroma.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  24. F. Rezaei, A. Bidari, A.P. Birjandi, M.R. Milani Hosseini, Y. Assadi, Development of a dispersive liquid–liquid microextraction method for the determination of polychlorinated biphenyls in water. J. Hazard. Mater. 158, 621–627 (2008). https://doi.org/10.1016/J.JHAZMAT.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  25. L. Nie, C. Cai, R. Guo, S. Yao, Z. Zhu, Y. Hong, D. Guo, Ionic liquid-assisted DLLME and SPME for the determination of contaminants in food samples. Separations 9, 170 (2022). https://doi.org/10.3390/SEPARATIONS9070170

    Article  CAS  Google Scholar 

  26. A. Bidari, M.R. Ganjali, P. Norouzi, Development and evaluation of a dispersive liquid–liquid microextraction based test method for quantitation of total anionic surfactants: advantages against reference methods. Cent. Eur. J. Chem. 8, 702–708 (2010). https://doi.org/10.2478/S11532-010-0032-0/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  27. M. Kamankesh, A. Mohammadi, Z.M. Tehrani, R. Ferdowsi, H. Hosseini, Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design. Talanta 109, 46–51 (2013). https://doi.org/10.1016/J.TALANTA.2013.01.052

    Article  CAS  PubMed  Google Scholar 

  28. U. Alshana, N.G. Göǧer, N. Ertaş, Dispersive liquid-liquid microextraction combined with field-amplified sample stacking in capillary electrophoresis for the determination of non-steroidal anti-inflammatory drugs in milk and dairy products. Food Chem. 138, 890–897 (2013). https://doi.org/10.1016/J.FOODCHEM.2012.11.121

    Article  CAS  PubMed  Google Scholar 

  29. H. Shaaban, Sustainable dispersive liquid–liquid microextraction method utilizing a natural deep eutectic solvent for determination of chloramphenicol in honey: assessment of the environmental impact of the developed method. RSC Adv. 13, 5058–5069 (2023). https://doi.org/10.1039/D2RA08221G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. Mohammad, R. Mobin, Identification of co-existing cationic surfactants with preliminary separation on silica HPTLC plates using mixed aqueous sodium chloride-ethanol as eluent. Cogent Chem. 1, 10197978 (2015). https://doi.org/10.1080/23312009.2015.1019798

    Article  CAS  Google Scholar 

  31. S.A. Bhawani, O. Sulaiman, R. Hashim, M.N. Mohamad Ibrahim, Analysis of surfactants by thin-layer chromatography: a review. Tenside Surfactants Deterg. 47, 73–80 (2010). https://doi.org/10.3139/113.110054/HTML

    Article  CAS  Google Scholar 

  32. A. Amirvaresi, M. Rashidi, M. Kamyar, M. Amirahmadi, B. Daraei, H. Parastar, Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection. J. Chromatogr. A (2020). https://doi.org/10.1016/j.chroma.2020.461461

    Article  PubMed  Google Scholar 

  33. N. Stanek, I. Jasicka-Misiak, HPTLC phenolic profiles as useful tools for the authentication of honey. Food Anal. Methods 11, 2979–2989 (2018). https://doi.org/10.1007/s12161-018-1281-3

    Article  Google Scholar 

  34. R. Rani, S. Medhe, M. Srivastava, HPTLC-MS analysis of melamine in milk: standardization and validation. Dairy Sci. Technol. 95, 257–263 (2015). https://doi.org/10.1007/S13594-014-0204-3

    Article  CAS  Google Scholar 

  35. X. Zhang, J. Zheng, H. Gao, Curve fitting using wavelet transform for resolving simulated overlapped spectra. Anal. Chim. Acta 443, 117–125 (2001). https://doi.org/10.1016/S0003-2670(01)01185-0

    Article  CAS  Google Scholar 

  36. Y. Zheng, D. Tian, K. Liu, Z. Bao, P. Wang, C. Qiu, D. Liu, R. Fan, Peak detection of TOF-SIMS using continuous wavelet transform and curve fitting. Int. J. Mass Spectrom. 428, 43–48 (2018). https://doi.org/10.1016/j.ijms.2018.03.001

    Article  CAS  Google Scholar 

  37. P. Borman, D. Elder, Q2(R1) validation of analytical procedures, in ICH Quality Guidelines (2017). https://doi.org/10.1002/9781118971147.CH5

  38. M.K. Gupta, A. Ghuge, M. Parab, Y. Al-Refaei, A. Khandare, N. Dand, N. Waghmare, A comparative review on high-performance liquid chromatography (HPLC), ultra performance liquid chromatography (UPLC) & high-performance thin layer chromatography (HPTLC) with current updates. Curr. Issues Pharm. Med. Sci. 35, 224–228 (2022). https://doi.org/10.2478/CIPMS-2022-0039

    Article  CAS  Google Scholar 

  39. R. Basharat, V. Kotra, L.Y. Loong, A. Mathews, M. Kanakal, C.B.P. Devi et al., Ultra performance liquid chromatography (mini-review). Orient. J. Chem. 37(4), 847–857 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Food and Drug Control Laboratory staffs, Food and Drug Deputy, Ministry of Health and Medical Education, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elahesadat Hosseini.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, E., Nateghi, L. & Daraei, B. Application of non-linear curve-fitting to develop dispersive liquid–liquid microextraction followed by HPTLC for determination of milk-surfactant adulteration. Food Measure 18, 1517–1527 (2024). https://doi.org/10.1007/s11694-023-02251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02251-6

Keywords

Navigation