Log in

Multivariate optimization of a method based on slurry sampling for determination of Fe, Mn and Zn in spirulina (Arthrospira sp.) samples

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In the present work a novel methodology for the determination of Fe, Mn, and Zn by flame atomic absorption spectrometry in samples of spirulina, commercialized as a food supplement, was developed. Variables involved in the sample preparation were optimized using the Doehlert design and desirability function. The developed method presented quantification limits of 18, 5.3, and 8.6 mg kg−1, precision, expressed as repeatability (%RSD, 0.5 mg kg−1, N = 5) of 1.3; 1.8 and 2.3% respectively for Fe, Mn, and Zn. Accuracy was assessed by addition/recovery test, comparison with another method adopted as standard, and analysis of certified reference materials (Apple leaves NIST1515, and Pinus leaves NIST 1575a), showing that the method presents adequate accuracy for the determination of the elements studied. The concentrations of Fe, Mn, and Zn found were in the ranges from 52.5 to 836; 7.50 to 40.2, and 13.7 to 25.0 mg kg−1 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. S. Kouser Ali, A. Mohammed Saleh, Int. J. Pharm. Pharm. Sci. 4(3), 9–15 (2012)

    Google Scholar 

  2. B.W.B. Holman, A.E.O. Malau-Aduli, J. Anim. Physiol. Anim. Nutr. (2013). https://doi.org/10.1111/j.1439-0396.2012.01328.x

    Article  Google Scholar 

  3. B. Raoof, B.D. Kaushik, R. Prasanna, Biomass. Bioenerg. (2006). https://doi.org/10.1016/j.biombioe.2005.09.006

    Article  Google Scholar 

  4. E.W. Becker, Biotechnol. Adv. (2007). https://doi.org/10.1016/j.biotechadv.2006.11.002

    Article  PubMed  Google Scholar 

  5. M.R. Andrade, J.A.V. Costa, Ciencia Tecnol. Alime. (2008). https://doi.org/10.1590/S1413-70542008000500029

    Article  Google Scholar 

  6. A.S. Babadzhanov, N. Abdusamatova, F.M. Yusupova, N. Faizullaeva, L.G. Mezhlumyan, M.K. Malikova, Chem. Nat. Compd. (2004). https://doi.org/10.1023/B:CONC.0000039141.98247.e8

    Article  Google Scholar 

  7. T. Okamoto, H. Kawashima, H. Osada, E. Toda, K. Homma, N. Nagai, Y. Imai, K. Tsubota, Y. Ozawa, Transl. Vis. Sci. Technol. (2019). https://doi.org/10.1167/tvst.8.6.20

    Article  PubMed  PubMed Central  Google Scholar 

  8. S. Grosshagauer, K. Kraemer, V. Somoza, J. Agric. Food. Chem. (2020). https://doi.org/10.1021/acs.jafc.9b08251

    Article  PubMed  Google Scholar 

  9. L. Gouveia, A.P. Batista, I. Sousa, A. Raymundo, N.M. Bandarra, in Food Chemistry Research Developments, ed. by K.N. Papadopoulos (Nova Science Publishers, 2008), pp. 1–37.

  10. T.A. Anunciação, W.C. Carvalho, M.G.A. Korn, J.S. Almeida, A.F. Dantas, L.S.G. Teixeira, Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2021.130474

    Article  Google Scholar 

  11. A.S. Silva, G.C. Brandão, S.L.C. Ferreira, A.M.P. Santos, Anal. Lett. (2021). https://doi.org/10.1080/00032719.2021.1991941

    Article  Google Scholar 

  12. C.K. Andrade, P.M.K. Brito, V.E. Anjos, S.P. Quináia, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.07.111

    Article  PubMed  Google Scholar 

  13. C.K. Andrade, V.E. Anjos, M.L. Felsner, Y.R. Torres, S.P. Quináia, Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2013.09.065

    Article  PubMed  Google Scholar 

  14. F.R. Amorim, E.A.N. Knupp, J.S.B. Silva, C.C. Nascentes, At. Spectrosc. (2016). https://doi.org/10.46770/AS.2016.06.006

    Article  Google Scholar 

  15. G.C. Brandao, D.P. Gomes, G.D. Matos, Food Anal. Methods (2012). https://doi.org/10.1007/s12161-011-9282-5

    Article  Google Scholar 

  16. A.C. Trindade, S.A. Araújo, F.A.C. Amorim, D.S. Silva, J.P.S. Alves, J.S. Trindade, R.M. Aguiar, M.A. Bezerra, Food Anal. Methods (2020). https://doi.org/10.1007/s12161-019-01578-5

    Article  Google Scholar 

  17. S.O. Souza, S.S.L. Costa, B.C.T. Brum, S.H. Santos, C.A.B. Garcia, R.G.O. Araujo, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2018.03.060

    Article  PubMed  Google Scholar 

  18. H. Cui, W. Guo, L. **, S. Hu, J. Anal. At. Spectrom. (2020). https://doi.org/10.1039/C9JA00340A

    Article  Google Scholar 

  19. R. Teuma-Castelletti, D. Beauchemin, J. Anal. At. Spectrom. (2020). https://doi.org/10.1039/D0JA00275E

    Article  Google Scholar 

  20. W.N.L. Santos, D.D. Cavalcante, S.M. Macedo, J.S. Nogueira, E.G. Silva, Food Anal. Method. (2013). https://doi.org/10.1007/s12161-012-9519-y

    Article  Google Scholar 

  21. M.L. Lin, S.J. Jiang, Food Chem. (2013). https://doi.org/10.1016/j.foodchem.2013.04.105

    Article  PubMed  PubMed Central  Google Scholar 

  22. M. Asik, U. Ay, Fresen. Environ. Bull. 29, 6591 (2020)

    CAS  Google Scholar 

  23. H.A. Ergül, T. Varol, Ü. Ay, Mar. Pollut. Bull. (2013). https://doi.org/10.1016/j.marpolbul.2013.05.018

    Article  PubMed  Google Scholar 

  24. D. Bingöl, Ü. Ay, S.K. Bozbaş, N. Uzgören, Mar. Pollut. Bull. (2013). https://doi.org/10.1016/j.marpolbul.2012.12.006

    Article  PubMed  Google Scholar 

  25. Y. Kojuncu, J.M. Bundalesvka, Ü. Ay, K. Cundeva, T. Stafilov, G. Akçin, Sep. Sci. Technol. (2004). https://doi.org/10.1081/SS-200026751

    Article  Google Scholar 

  26. U.M.F.M. Cerqueira, M.A. Bezerra, S.L.C. Ferreira, R.J. Araujo, B.N. Silva, C.G. Novaes, Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2021.130429

    Article  PubMed  Google Scholar 

  27. C.G. Novaes, R.T. Yamaki, V.F. Paula, B.B. Nascimento Júnior, J.A. Barreto, G.S. Valasques, M.A. Bezerra, Rev. Virtual Quím. (2017). https://doi.org/10.21577/1984-6835.20170070

    Article  Google Scholar 

  28. M.A. Bezerra, V.A. Lemos, C.G. Novaes, R.M. Jesus, H.R. Souza Filho, S.A. Araujo, J.P.S. Alves, Microchem J. (2020). https://doi.org/10.1016/j.microc.2019.104336

    Article  Google Scholar 

  29. M.A. Bezerra, J.T. Castro, R.C. Macedo, D.G. Silva, Anal. Chim. Acta. (2010). https://doi.org/10.1016/j.aca.2010.04.063

    Article  PubMed  Google Scholar 

  30. N.A. Al-Dhabi, Saudi. J. Biol. Sci. (2013). https://doi.org/10.1016/j.sjbs.2013.04.006

    Article  Google Scholar 

  31. M.V. Principe, I.S. Permigiani, M.C. Della Vedova, E. Petenatti, P. Pacheco, R.A. Gil, J. Pharm. Pharm. Res. 8, 422 (2020)

    CAS  Google Scholar 

  32. P. Rzymski, J. Budzulak, P. Niedzielski, P. Klimaszyk, J. Proch, L. Kozak, B. Poniedziałek, J. Appl. Physiol. (2019). https://doi.org/10.1007/s10811-018-1681-1

    Article  Google Scholar 

  33. B.D. Neher, S.M. Azcarate, J.M. Camiña, M. Savio, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2018.03.011

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support of the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB). Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq. Grant Number 304582/2018-2) and Financiadora de Estudos e Projetos (FINEP).

Funding

This research was supported by the Brazilian National Research Council (CNPq) (Grant Number 310949/2021–1).

Author information

Authors and Affiliations

Authors

Contributions

UMFMC: Conceptualization, experimental analysis, data analysis, and writing. MAB: Conceptualization, methodology, data analysis, writing, review, and editing. BNS: experimental analysis. CGN: data analysis, writing, review, and editing. ERVA: experimental analysis and writing. SAA: Data analysis, writing, review, and editing.

Corresponding author

Correspondence to Marcos Almeida Bezerra.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the research reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerqueira, U.M.F.M., Bezerra, M.A., Silva, B.N. et al. Multivariate optimization of a method based on slurry sampling for determination of Fe, Mn and Zn in spirulina (Arthrospira sp.) samples. Food Measure 17, 5322–5329 (2023). https://doi.org/10.1007/s11694-023-02034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02034-z

Keywords

Navigation