Log in

Green and accurate analytical method for monitoring atropine in foodstuffs as a contaminant and in pharmaceutical samples

  • Original Research
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Nowadays, atropine has been highlighted because of its anticholinergic effect and contamination in foodstuffs, and therefore, using an accurate and sensitive method for its determination is crucial in human health and food safety. In this study, a novel spectrophotometric method was suggested for the swift quantification of atropine. The proposed method was based on the formation of red ion-pair complexes between the drugs and the cyanidin reagent extracted from red cabbage (RC). In this regard, the effect of pH, time, and temperature was explored and optimized. According to the results, atropine determining was shown the best performance in pH 2 at room temperature in 30 min. In addition, this method revealed linear responses from 10 nM to 1 µM of atropine with limit of detection (LOD) value of 0.0019 µM. Also, the selectivity value of this method was investigated in the presence of some drugs with the same structure and some common species as interferences. The results verified no interference in atropine determination, as well as, the results obtained from repeatability (RSD ⁓ 2.56) of this method were acceptable. Moreover, the applicability of this method was tested in buckwheat and atropine sulfate as food and pharmaceutical real sample, respectively. Real sample analysis was carried out with the standard addition method and the recovery percentages (96.54–104.87%) witnessed the high capability of this method in atropine determination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

References

  1. M. Mehmandoust, N. Erk, O. Karaman, F. Karimi, M. Bijad, C. Karaman, Three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles for highly selective determination of azo dye compound tartrazine. Food Chem. Toxicol. 158, 112698 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. M. Ghalkhani, N. Zare, F. Karimi, C. Karaman, M. Alizadeh, Y. Vasseghian, Recent advances in Ponceau dyes monitoring as food colorant substances by electrochemical sensors and developed procedures for their removal from real samples. Food Chem. Toxicol. 161, 112830 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. A. John, L. Benny, A.R. Cherian, S.Y. Narahari, A. Varghese, G. Hegde, Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review. J. Nanostruct. Chem. 11(1), 1–31 (2021)

    Article  Google Scholar 

  4. M.J. Deka, D. Chowdhury, B.K. Nath, Recent development of modified fluorescent carbon quantum dots-based fluorescence sensors for food quality assessment. Carbon Lett. 32(5), 1131–1149 (2022)

    Article  Google Scholar 

  5. P.R. Shankar, Drug safety in develo** countries: achievements and challenges. Res. Soc. Admin. Pharm. 16(9), 1323 (2020)

    Article  Google Scholar 

  6. T. Tavana, A.R. Rezvani, Monitoring of atropine anticholinergic drug using voltammetric sensor amplified with NiO@Pt/SWCNTs and ionic liquid. Chemosphere 289, 133114 (2022)

    Article  CAS  PubMed  Google Scholar 

  7. F. Ameen, Y. Hamidian, R. Mostafazadeh, R. Darabi, N. Erk, M.A. Islam et al., A novel atropine electrochemical sensor based on silver nano particle-coated Spirulina platensis multicellular blue-green microalga. Chemosphere 324, 138180 (2023)

    Article  CAS  PubMed  Google Scholar 

  8. F. Karimi, Y. Hamidian, F. Behrouzifar, R. Mostafazadeh, A. Ghorbani-HasanSaraei, M. Alizadeh et al., An applicable method for extraction of whole seeds protein and its determination through Bradford’s method. Food Chem. Toxicol. 164, 113053 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. J. Lu, W. Chen, W. Zhang, H. Liu, A. Simonetti, Z. Hu et al., Determination of carbon isotopes in carbonates (calcite, dolomite, magnesite, and siderite) by femtosecond laser ablation multi-collector ICP-MS. J. Anal. At. Spectrom. 37(2), 278–288 (2022)

    Article  CAS  Google Scholar 

  10. R. Mostafazadeh, A. Ghaffarinejad, F. Tajabadi, A caffeic acid electrochemical sensor amplified with GNR/CoFe2O4@NiO and 1-ethyl-3-methylimidazolium acetate; a new perspective for food analysis. Food Chem. Toxicol. 167, 113312 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. M. Mehmandoust, M. Soylak, N. Erk, Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of tenofovir as an anti-HIV drug. Talanta 253, 123991 (2023)

    Article  CAS  PubMed  Google Scholar 

  12. N. Erk, Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma by liquid chromatography. J. Chromatogr. B 784(1), 195–201 (2003)

    Article  CAS  Google Scholar 

  13. K.C. Shih, T.C. Chan, A.L. Ng, J.S. Lai, W.W. Li, A.C. Cheng et al., Use of atropine for prevention of childhood myopia progression in clinical practice. Eye Contact Lens 42(1), 16–23 (2016)

    Article  PubMed  Google Scholar 

  14. L.L. Foo, H. Htoon, S.Z. Farooqui, A. Chia, Part-time use of 1% atropine eye drops for prevention of myopia progression in children. Int. Ophthalmol. 40(7), 1857–1862 (2020)

    Article  PubMed  Google Scholar 

  15. K. Richdale, E.S. Tomiyama, G.D. Novack, M.A. Bullimore, Compounding of low-concentration atropine for myopia control. Eye Contact Lens 48(12), 489–492 (2022)

    Article  PubMed  Google Scholar 

  16. M. de Nijs, C. Crews, F. Dorgelo, S. MacDonald, P.P.J. Mulder, Emerging Issues on tropane alkaloid contamination of food in Europe. Toxins (Basel) 15(2), 98 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  17. N.V. Rao, K.J. Reddy, P. Bharath, D. Ramachandran, Development and validation of a RP-HPLC method for the determination atropine and its impurities in pharmaceutical dosage form as per ICH guidelines. Current Trends Biotechnol. Pharm. 16(3), 417–428 (2022)

    CAS  Google Scholar 

  18. A. Hvid-Hansen, N. Jacobsen, J. Hjortdal, F. Moller, B. Ozenne, L. Kessel, Low-dose atropine induces changes in ocular biometrics in myopic children: exploring temporal changes by linear mixed models and contribution to treatment effect by mediation analyses. J. Clin. Med. 12(4), 1605 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Chierigo, L. Ferro Desideri, C.E. Traverso, A. Vagge, The role of atropine in preventing myopia progression: an update. Pharmaceutics 14(5), 900 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. González-Gómez, J. Gañán, S. Morante-Zarcero, D. Pérez-Quintanilla, I. Sierra, Atropine and scopolamine occurrence in spices and fennel infusions. Food Control 146, 109555 (2023)

    Article  Google Scholar 

  21. K. McLendon, C.V. Preuss, Atropine. StatPearls [Internet] (StatPearls Publishing, Treasure Island, 2022)

    Google Scholar 

  22. E. Kowalczyk, K. Kwiatek, Scopolamine and atropine in feeds–determination with liquid chromatography mass spectrometry. Food Addit. Contamin. A 39(5), 977–989 (2022)

    Article  CAS  Google Scholar 

  23. Z. Shi, W. Zou, Z. Zhu, Z. **ong, S. Li, P. Dong et al., Tropane alkaloids (hyoscyamine, scopolamine and atropine) from genus Datura: extractions, contents, syntheses and effects. Ind. Crops Prod. 186, 115283 (2022)

    Article  CAS  Google Scholar 

  24. Y. Wang, X. Zhu, Y. Xuan, M. Wang, X. Zhou, X. Qu, Short-term effects of atropine 0.01% on the structure and vasculature of the choroid and retina in myopic chinese children. Ophthalmol. Therapy 11(2), 833–856 (2022)

    Article  Google Scholar 

  25. E. Wigenstam, E. Artursson, A. Bucht, L. Thors, Supplemental treatment to atropine improves the efficacy to reverse nerve agent induced bronchoconstriction. Chem. Biol. Interact. 364, 110061 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. G. Vuković, T. Stojanović, B. Konstantinović, V. Bursić, N. Puvača, M. Popov et al., Atropine and scopolamine in maize products from the retail stores in the Republic of Serbia. Toxins 14(9), 621 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  27. S.A. Ejaz, M. Aziz, A. Ahmed, S.S. Alotaibi, S.M. Albogami, F. Siddique et al., New Insight into the pharmacological importance of atropine as the potential inhibitor of AKR1B1 via detailed computational investigations: DFTs, ADMET, molecular docking, and molecular dynamics studies. Appl. Biochem. Biotechnol. (2023). https://doi.org/10.1007/s12010-023-04411-2

    Article  PubMed  Google Scholar 

  28. O. Dushna, L. Dubenska, M. Vojs, M. Marton, I. Patsay, S. Ivakh et al., Highly sensitive determination of atropine in pharmaceuticals, biological fluids and beverage on planar electrochemical cell with working boron-doped diamond electrode. Electrochim. Acta 432, 141182 (2022)

    Article  CAS  Google Scholar 

  29. R.V. North, M.E. Kelly, A review of the uses and adverse effects of topical administration of atropine. Ophthal. Physiol. Opt. 7(2), 109–114 (1987)

    Article  CAS  Google Scholar 

  30. D. Mevorach, Adverse effects of atropine sulfate autoinjection. Ann. Pharmacother. 26(4), 564 (1992)

    Article  CAS  PubMed  Google Scholar 

  31. Q. Gong, M. Janowski, M. Luo, H. Wei, B. Chen, G. Yang et al., Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis. JAMA Ophthalmol. 135(6), 624–630 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  32. C. Chen, J. Yao, Efficacy and adverse effects of atropine for myopia control in children: a meta-analysis of randomised controlled trials. J. Ophthalmol. 2021, 4274572 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  33. A. Shebani, M. Hnish, H. Elmelliti, M.M. Abdeen, A. Ganaw, Acute poisoning with Datura stramonium plant seeds in Qatar. Cureus J. Med. Sci. (2021). https://doi.org/10.7759/cureus.20152

    Article  Google Scholar 

  34. T. Tavana, A.R. Rezvani, Monitoring of atropine anticholinergic drug using voltammetric sensor amplified with NiO@Pt/SWCNTs and ionic liquid. Chemosphere 289, 133114 (2022)

    Article  CAS  PubMed  Google Scholar 

  35. X. **tao, L. Yufei, Y. Liming, L. Chunyan, Y. Quanwei, W. Weiying et al., Rapid and simultaneous analysis of five alkaloids in four parts of Coptidis Rhizoma by near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 188, 611–618 (2018)

    Article  Google Scholar 

  36. L. **, C. Jiang, F. Wang, X. Zhang, D. Huo, M. Sun et al., Recent advances in construction and application of metal-nanozymes in pharmaceutical analysis. Crit. Rev. Anal. Chem. (2022). https://doi.org/10.1080/10408347.2022.2128632

    Article  PubMed  Google Scholar 

  37. F. Dabaghian, A. Azadi, M.M. Zarshenas, Design, reformulation, and standardization of a traditional-based memory enhancer herbal preparation originated from Persian medicine. J. Med. Plants 21(82), 93–110 (2022)

    Article  Google Scholar 

  38. S.M. Hosseini, R. Haddad, S. Sardari, Biotransformation of atropine, 4-hydroxy coumarin, 8-hydroxy quinoline, indole and penicillin G by the natural microflora. Health Biotechnol. Biopharma (HBB) 6(1), 13–25 (2022)

    Google Scholar 

  39. T. Tavana, A.R. Rezvani, Monitoring of atropine anticholinergic drug using voltammetric sensor amplified with NiO@ Pt/SWCNTs and ionic liquid. Chemosphere 289, 133114 (2022)

    Article  CAS  PubMed  Google Scholar 

  40. A. Cetinkaya, S.I. Kaya, M. Yence, F. Budak, S.A. Ozkan, Ionic liquid-based materials for electrochemical sensor applications in environmental samples. Trends Environ. Anal. Chem. 37, e00188 (2022)

    Article  Google Scholar 

  41. H. Karimi-Maleh, R. Darabi, F. Karimi, C. Karaman, S.A. Shahidi, N. Zare et al., State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: a review. Environ. Res. 222, 115338 (2022)

    Article  Google Scholar 

  42. B. Dinesh, A. Aadhav, K.S.S. Devi, U.M. Krishnan, Electrocatalytic reduction of 2,4 dinitrophenol on carbon black-modified glassy carbon electrode and its selective recognition in cold beverages. Carbon Lett. 32(4), 1017–1029 (2022)

    Article  Google Scholar 

  43. M.Q. Yang, L. Wang, H.Z. Lu, Q.Z. Dong, H.M. Li, S. Liu, Graphene and graphene-like carbon nanomaterials-based electrochemical biosensors for phytohormone detection. Carbon Lett. (2022). https://doi.org/10.1007/s42823-022-00419-6

    Article  Google Scholar 

  44. J. Zoubir, C. Radaa, I. Bakas, M. Tamimi, S. Qourzal, A. Assabbane, One-shot synthesis of a nickel oxide/carbon composite electrocatalyst for a sensor capable of electrochemically detecting the antibiotic chloramphenicol in real samples. Carbon Lett. 33, 761–780 (2023)

    Article  Google Scholar 

  45. R.T. Hussain, A.K.M.S. Islam, M. Khairuddean, F.B.M. Suah, A polypyrrole/GO/ZnO nanocomposite modified pencil graphite electrode for the determination of andrographolide in aqueous samples. Alex. Eng. J. 61(6), 4209–4218 (2022)

    Article  Google Scholar 

  46. L.L. **an, L. Chia, D. Georgess, L. Luo, S. Shuai, A.J. Ewald et al., Genetic engineering of primary mouse intestinal organoids using magnetic nanoparticle transduction viral vectors for frozen sectioning. Jove-J. Vis. Exp. 147, e57040 (2019)

    Google Scholar 

  47. M. Isacfranklin, F. Ameen, G. Ravi, R. Yuvakkumar, S.I. Hong, D. Velauthapillai et al., Single-phase Cr2O3 nanoparticles for biomedical applications. Ceram. Int. 46(12), 19890–19895 (2020)

    Article  CAS  Google Scholar 

  48. S.F. Musa, T.S. Yeat, L.Z.M. Kamal, Y.M. Tabana, M.A. Ahmed, A. El Ouweini et al., Pleurotus sajor-caju can be used to synthesize silver nanoparticles with antifungal activity against Candida albicans. J. Sci. Food Agric. 98(3), 1197–1207 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. L. Bechnak, C. Khalil, R. El Kurdi, R.S. Khnayzer, D. Patra, Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem. Photobiol. Sci. 19(8), 1088–1098 (2020)

    Article  CAS  PubMed  Google Scholar 

  50. A. Jaafar, N. Mansour, A. Fix-Tailler, M. Allain, W.H. Faour, W.N. Shebaby et al., Synthesis, characterization, antibacterial and antifungal activities evaluation of metal complexes with benzaldehyde-4-methylthiosemicarbazone derivatives. ChemistrySelect (2022). https://doi.org/10.1002/slct.202104497

    Article  Google Scholar 

  51. F. Ameen, K.S. Al-Maary, A. Almansob, S. AlNadhari, Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Appl. Nanosci. 13, 2233–2240 (2022)

    Article  Google Scholar 

  52. N. Korkmaz, Y. Ceylan, A. Hamid, A. Karadağ, A.S. Bülbül, M.N. Aftab et al., Biogenic silver nanoparticles synthesized via Mimusops elengi fruit extract, a study on antibiofilm, antibacterial, and anticancer activities. J. Drug Deliv. Sci. Technol. 59, 101864 (2020)

    Article  CAS  Google Scholar 

  53. S. Wang, L. Arnaud, S. Essaidi, S. Blaize, S. Kostcheev, A. Bruyant et al., Plasmonic origami: tuning optical properties by periodic folding of a gold nano film. J. Opt. Soc. Am. B 39(5), 1400–1409 (2022)

    Article  CAS  Google Scholar 

  54. Z. Vryzas, L. Nalbandian, V.T. Zaspalis, V.C. Kelessidis, How different nanoparticles affect the rheological properties of aqueous Wyoming sodium bentonite suspensions. J. Petrol Sci. Eng. 173, 941–954 (2019)

    Article  CAS  Google Scholar 

  55. S. Nadeem, N. Abbas, M.Y. Malik, Heat transport in CNTs based nanomaterial flow of non-Newtonian fluid having electro magnetize plate. Alex. Eng. J. 59(5), 3431–3442 (2020)

    Article  Google Scholar 

  56. J. Romanos, S. Abou Dargham, M. Prosniewski, R. Roukos, F. Barakat, P. Pfeifer, Structure–function relations for gravimetric and volumetric methane storage capacities in activated carbon. ACS Omega 3(11), 15119–15124 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. J. Romanos, F. Barakat, D.S. Abou, Nanoporous graphene monolith for hydrogen storage. Mater. Today-Proc. 5(9), 17478–17483 (2018)

    Article  CAS  Google Scholar 

  58. J. Romanos, M. Beckner, M. Prosniewski, T. Rash, M. Lee, J.D. Robertson et al., Boron-neutron capture on activated carbon for hydrogen storage. Sci. Rep.-UK 9, 2971 (2019)

    Article  Google Scholar 

  59. P. Mishra, L. Singh, Z. Ab Wahid, S. Krishnan, S. Rana, M.A. Islam et al., Photohydrogen production from dark-fermented palm oil mill effluent (DPOME) and statistical optimization: renewable substrate for hydrogen. J. Clean. Prod. 199, 11–17 (2018)

    Article  CAS  Google Scholar 

  60. R.N.E. Tiri, F. Gulbagca, A. Aygun, A. Cherif, F. Sen, Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis. Environ. Res. 206, 112622 (2022)

    Article  CAS  PubMed  Google Scholar 

  61. H. Jafarzadeh, C. Karaman, A. Gungor, O. Karaman, P.L. Show, P. Sami et al., Hydrogen production via sodium borohydride hydrolysis catalyzed by cobalt ferrite anchored nitrogen-and sulfur co-doped graphene hybrid nanocatalyst: artificial neural network modeling approach. Chem. Eng. Res. Des 183, 557–566 (2022)

    Article  CAS  Google Scholar 

  62. O. Karaman, Three-dimensional graphene network supported nickel–cobalt bimetallic alloy nanocatalyst for hydrogen production by hydrolysis of sodium borohydride and develo** of an artificial neural network modeling to forecast hydrogen production rate. Chem. Eng. Res. Des. 181, 321–330 (2022)

    Article  CAS  Google Scholar 

  63. P. Dhiman, D. Goyal, G. Rana, A. Kumar, G. Sharma, Linxin et al., Recent advances on carbon-based nanomaterials supported single-atom photo-catalysts for waste water remediation. J Nanostruct. Chem. (2022). https://doi.org/10.1007/s40097-022-00511-3

    Article  Google Scholar 

  64. M. Alaguprathana, M. Poonkothai, F. Ameen, S.A. Bhat, R. Mythili, C. Sudhakar, Sodium hydroxide pre-treated Aspergillus flavus biomass for the removal of reactive black 5 and its toxicity evaluation. Environ. Res. 214, 113859 (2022)

    Article  CAS  PubMed  Google Scholar 

  65. Y.Y. Liang, H. Demir, Y.J. Wu, A. Aygun, R.N.E. Tiri, T. Gur et al., Facile synthesis of biogenic palladium nanoparticles using biomass strategy and application as photocatalyst degradation for textile dye pollutants and their in-vitro antimicrobial activity. Chemosphere 306, 135518 (2022)

    Article  CAS  PubMed  Google Scholar 

  66. V. Kandathil, A.K. Veetil, A. Patra, A. Moolakkil, M. Kempasiddaiah, S.B. Somappa et al., A green and sustainable cellulosic-carbon-shielded Pd–MNP hybrid material for catalysis and energy storage applications. J Nanostruct. Chem. 11(3), 395–407 (2021)

    Article  CAS  Google Scholar 

  67. F. Karimi, M. Ghorbani, M.S. Lashkenari, M. Jajroodi, E.F. Talooki, Y. Vaseghian et al., Polyaniline–manganese ferrite supported platinum–ruthenium nanohybrid electrocatalyst: synergizing tailoring toward boosted ethanol oxidation reaction. Top Catal. 65(5–6), 716–725 (2022)

    Article  CAS  Google Scholar 

  68. O. Karaman, Oxygen reduction reaction performance boosting effect of nitrogen/sulfur co-doped graphene supported cobalt phosphide nanoelectrocatalyst: pH-universal electrocatalyst. ECS J. Solid State Sci. 10(6), 061003 (2021)

    Google Scholar 

  69. F. Karimi, R.N.E. Tiri, A. Aygun, F. Gulbagca, S. Ozdemir, S. Gonca et al., One-step synthesized biogenic nanoparticles using Linum usitatissimum: application of sun-light photocatalytic, biological activity and electrochemical H2O2 sensor. Environ. Res. 218, 114757 (2023)

    Article  CAS  PubMed  Google Scholar 

  70. M. Mehmandoust, N. Erk, C. Karaman, O. Karaman, An electrochemical molecularly imprinted sensor based on CuBi2O4/rGO@MoS2 nanocomposite and its utilization for highly selective and sensitive for linagliptin assay. Chemosphere 291, 132807 (2022)

    Article  CAS  PubMed  Google Scholar 

  71. Z. Zhang, H. Karimi-Maleh, In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324, 138302 (2023)

    Article  CAS  PubMed  Google Scholar 

  72. N. Ghareaghajlou, S. Hallaj-Nezhadi, Z. Ghasempour, Red cabbage anthocyanins: stability, extraction, biological activities and applications in food systems. Food Chem. 365, 130482 (2021)

    Article  CAS  PubMed  Google Scholar 

  73. B.F.A. Mercedes, G.S.J. Santos, C.B.O. Nydia, S.M.D. Isabel, L.C. Jaime, B.R.A. Karina, Validation of a micro-assay based on the pH differential method to quantify total monomeric anthocyanins in red cabbage (Brassica oleracea var capitata f rubra). J. Food Meas. Charact. 16(5), 3967–3976 (2022)

    Article  Google Scholar 

  74. S. Luger, L. Mayerhuber, G. Weigelhofer, T. Hein, B. Holzer, C. Hametner et al., Development of ion-selective electrodes for tropane, atropine, and scopolamine–a concept for the analysis of tropane alkaloids. Electroanalysis 34(10), 1579–1586 (2022)

    Article  CAS  Google Scholar 

  75. V. Nikolova, S. Dobrev, N. Kircheva, V. Yordanova, T. Dudev, S. Angelova, Host-guest complexation of cucurbit [7] uril and cucurbit [8] uril with the antimuscarinic drugs tropicamide and atropine. J. Mol. Graph. Model. 119, 108380 (2023)

    Article  CAS  PubMed  Google Scholar 

  76. H.A. Alshamar, R.W. Dapson, Molecular stabilization and complexation: the secrets of making a nuclear-selective histological stain from naturally occurring anthocyanins without oxidation. Biotech. Histochem. 96(3), 161–170 (2021)

    Article  CAS  PubMed  Google Scholar 

  77. K.M. Bhat, V. Kumar, M. Khurshid, N.S. Parmar, Development of a new spectrophotometric method for the analysis of atropine sulphate. Indian J. Pharm. Sci. 64, 584–585 (2002)

    CAS  Google Scholar 

  78. H. Pokiya. Absorbance ratio spectrophotometric method for the simultaneous estimation of dexamethasone sodium phosphate and atropine sulphate in eye drop. (2014).

  79. A.K. Mahmood, Development of two different spectrophotometric methods for the determination of atropine drug in pure form and pharmaceutical preparations. Ibn AL-Haitham J. Pure Appl. Sci. 25(3), 226–241 (2017)

    Google Scholar 

  80. J. Mukherjee, P.T. Wong, S. Tang, K. Gam, A. Coulter, J.R. Baker Jr. et al., Mechanism of cooperativity and nonlinear release kinetics in multivalent dendrimer-atropine complexes. Mol. Pharm. 12(12), 4498–4508 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nevin Erk or Ceren Karaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidian, Y., Mostafazadeh, R., Erk, N. et al. Green and accurate analytical method for monitoring atropine in foodstuffs as a contaminant and in pharmaceutical samples. Food Measure 17, 4870–4880 (2023). https://doi.org/10.1007/s11694-023-01972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01972-y

Keywords

Navigation