Log in

Rheological, microstructural and biochemical characterisation of fruit pomace jams

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present investigation aimed to develop and characterize fruit pomace jam prepared from different juice waste residues for rheological, morphological and biochemical properties. Five pomace jams were prepared viz. apple pomace jam (APJ), pineapple pomace jam (PPJ), guava pomace jam (GPJ), kinnow pomace jam (KPJ) and mixed fruit pomace jam (MFPJ). The dynamic oscillatory analysis revealed typical gel like behaviour for fruit pomace jams; storage modulus (G′) being higher than elastic modulus (G″) at variable frequencies. Surface morphology depicted heterogeneous ultrastructure with pocket formation in prepared pomace jams, among which best 3-D gel network was observed for KPJ. Highest values of color coordinates (L*, a* and b*) were also exhibited by KPJ. Dietary fibre content for GPJ was noted as 5.15 g/100 g which was highest in comparison to other pomace jams and commercial fruit jam. Maximum phenolic content was observed in MFPJ (292.02 mg GAE/100 g). Appreciable carotenoid content was observed in KPJ (5.36 mg/100 g) and MFPJ (3.81 mg/100 g). As per ABTS and FRAP assay, antioxidant potential of pomace jams exhibited the following trend GPJ > APJ > MFPJ > KPJ > PPJ for radical scavenging activity (%) and reducing power potential, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. D.M. Amaya-Cruz, S. Rodríguez-González, L.F. Pérez-Ramírez, G. Loarca-Piña, S. Amaya-Llano, M.A. Gallegos-Corona, R. Reynoso-Camacho, Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis. J. Funct. Foods 17, 93–102 (2015)

    Article  CAS  Google Scholar 

  2. W. Russ, R. Meyer-Pittroff, Utilizing waste products from the food production and processing industries. Crit. Rev. Food Sci. Nutr. 44(1), 57–62 (2004)

    Article  PubMed  Google Scholar 

  3. A. Apeda, Processed Food Products Export Development Authority. Ministry of Commerce & Industry, GOI (2018). https://www.apeda.gov.in/. Accessed 23 Nov 2020

  4. G. Singla, U. Singh, R.S. Sangwan, P.S. Panesar, M. Krishania, Comparative study of various processes used for removal of bitterness from kinnow pomace and kinnow pulp residue. Food Chem. 335, 127643 (2020)

    Article  PubMed  Google Scholar 

  5. M.M. Selani, S.G.C. Brazaca, C.T. Santos Dias, W.S. Ratnayake, R.A. Flores, A. Bianchini, Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chem. 163, 23–30 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. R. Shalini, D.K. Gupta Utilization of pomace from apple processing industries: a review. J. Food Sci. Technol. 47(4), 365–371 (2010)

  7. N. Ab Aziz, A. Aziz, A.T. Talib, N.H. Ahmad, C.P. Tan, S. Kamarudin, Evaluation on physico-chemical properties of pink guava puree residue as bioresource. Int. Food Res. J. 23, S125 (2016)

    Google Scholar 

  8. Y. Lu, L.Y. Foo, Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68(1), 81–85 (2000)

    Article  CAS  Google Scholar 

  9. M. Xu, L. Ran, N. Chen, X. Fan, D. Ren, L. Yi, Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 297, 124970 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. C. Denny, P.S. Melo, M. Franchin, A.P. Massarioli, K.B. Bergamaschi, K.S.M. Alencar, P.L. Rosalen, Guava pomace: a new source of anti-inflammatory and analgesic bioactives. BMC Complement. Altern. Med. 13(1), 235 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  11. J. Jung, G. Cavender, Y. Zhao, Im**ement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. J. Food Sci. Technol. 52(9), 5568–5578 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. E. Montalvo-González, G. Aguilar-Hernández, A.S. Hernández-Cázares, I.I. Ruiz-López, A. Pérez-Silva, J. Hernández-Torres, M.D.L.A. Vivar-Vera, Production, chemical, physical and technological properties of antioxidant dietary fiber from pineapple pomace and effect as ingredient in sausages. CyTA-J. Food 16(1), 831–839 (2018)

    Article  Google Scholar 

  13. A.M. Hussein, M.M. Kamil, N.A. Hegazy, K.F. Mahmoud, M.A. Ibrahim, Utilization of some fruits and vegetables by-products to produce high dietary fiber jam. Food Sci. Qual. Manag. 37, 39–45 (2015)

    Google Scholar 

  14. M. Belović, A. Torbica, I. Pajić-Lijaković, J. Mastilović, Development of low calorie jams with increased content of natural dietary fibre made from tomato pomace. Food Chem. 237, 1226–1233 (2017)

    Article  PubMed  Google Scholar 

  15. G. Lal, G.S. Siddappa, G.L. Tandon, Jams and jellies, in Preservation of Fruits and Vegetables, 2nd edn (Publications and Information Division, Indian Council of Agricultural Research, 2010), pp. 123–124

  16. AOAC, Association of Official Analytical Chemist, in Official Methods of Analysis, 16th edn (AOAC, Virginia, 2011)

  17. S. Ranganna, Handbook of Analysis and Quality Control for Fruits and Vegetable Products (Tata McGraw and Hill Publication, New Delhi, 1999)

    Google Scholar 

  18. M. Tapia-Salazar, I.G. Arévalo-Rivera, M. Maldonado-Muñiz, L.E. Garcia-Amezquita, M.G. Nieto-López, D. Ricque-Marie, J. Welti-Chanes, The dietary fiber profile, total polyphenol content, functionality of Silvetia compressa and Ecklonia arborea, and modifications induced by high hydrostatic pressure treatments. Food Bioprocess. Technol. 12(3), 512–523 (2019)

    Article  CAS  Google Scholar 

  19. X. Bai, H. Zhang, S. Ren, Antioxidant activity and HPLC analysis of polyphenol-enriched extracts from industrial apple pomace. J. Sci. Food Agric. 93(10), 2502–2506 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. W. Wangcharoen, S. Phimphilai, Chlorophyll and total phenolic contents, antioxidant activities and consumer acceptance test of processed grass drinks. J. Food Sci. Technol. 53(12), 4135–4140 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Basu, U.S. Shivhare, T.V. Singh, V.S. Beniwal, Rheological, textural and spectral characteristics of sorbitol substituted mango jam. J. Food Eng. 105(3), 503–512 (2011)

    Article  CAS  Google Scholar 

  22. M. Abid, H. Yaich, H. Hidouri, H. Attia, M.A. Ayadi, Effect of substituted gelling agents from pomegranate peel on colour, textural and sensory properties of pomegranate jam. Food Chem. 239, 1047–1054 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. B. Suárez, A.L. Álvarez, Y.D. García, G. del Barrio, A.P. Lobo, F. Parra, Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food Chem. 120(1), 339–342 (2010)

    Article  Google Scholar 

  24. G.F.M. Ball, Vitamin A: retinoids and the provitamin A carotenoids, in Vitamins in Foods: Analysis, Bioavailability, and Stability (CRC, Taylor & Francis Group, Boca Raton, 2006), pp. 39–105

  25. M.B. Soquetta, F.S. Stefanello, K. da Mota Huerta, S.S. Monteiro, C.S. da Rosa, N.N. Terra, Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit (Actinidia deliciosa). Food Chem. 199, 471–478 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. C. Henríquez, H. Speisky, I. Chiffelle, T. Valenzuela, M. Araya, R. Simpson, S. Almonacid, Development of an ingredient containing apple peel, as a source of polyphenols and dietary fiber. J. Food Sci. 75(6), H172–H181 (2010)

    Article  PubMed  Google Scholar 

  27. C. Damiani, F.A.D. Silva, E.R. Asquieri, M.E. Lage, E.V.D.B. Vilas Boas, Antioxidant potential of Psidium guinnensis Sw. jam during storage. Pesqui. Agropecu. Trop. 42(1), 90–98 (2012)

    Article  Google Scholar 

  28. Codex Alimentarius. Guidelines on Nutrition Labelling. CAC/GL 2-1985 (Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO), 2011), http://www.fao.org/ag/humannutrition/33309-01d4d1dd1abc825f0582d9e5a2eda4a74.pdf Accessed 12 Jan 2021

  29. USDA, National Nutrient Database for Standard Reference, Report 19719: Jams and preserves, apricot (2019). https://fdc.nal.usda.gov/fdc-app.html#/food-details/170645/nutrients. Accessed 9 Jan 2021

  30. L.E. Figueroa, D.B. Genovese, Pectin gels enriched with dietary fibre for the development of healthy confectionery jams. Food Technol. Biotechnol. 56(3), 441–453 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Food Safety and Standards (Advertising and Claims) Regulations. (2018). https://www.fssai.gov.in/upload/uploadfiles/files/Gazette_Notification_Advertising_Claims. Accessed 16 Dec 2020

  32. I.O Minatel, C.V. Borges, M.I. Ferreira, H.A.G. Gomez, C.Y.O. Chen, G.P.P. Lima, Phenolic compounds: functional properties, impact of processing and bioavailability, in Phenolic Compounds Biological Activity (InTech, Rijeka, 2017), pp. 1–24

  33. K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19(6–7), 669–675 (2006)

    Article  CAS  Google Scholar 

  34. B.A. Santos, F. Teixeira, J.M. Soares, L.A. do Amaral, G.H.O. de Souza, T.D.S.F. de Almeida, D. Novello, Pineapple jam physicochemical and sensory evaluation with added pineapple peel. Int. J. Res. Granthaalayah 8(7), 374–383 (2020)

    Article  Google Scholar 

  35. M. Persic, M. Mikulic-Petkovsek, A. Slatnar, R. Veberic, Chemical composition of apple fruit, juice and pomace and the correlation between phenolic content, enzymatic activity and browning. LWT Food Sci. Technol. 82, 23–31 (2017)

    Article  CAS  Google Scholar 

  36. S. Aksay, H. Tokbaş, R. Arslan, F. Çınar, Some physicochemical properties of the whole fruit mandarin jam. Turk. J. Agric. Food Sci. Technol. 6(5), 632–635 (2018)

    Google Scholar 

  37. R. Subramanian, K. Muthukumarappan, S. Gunasekaran, Linear viscoelastic properties of regular-and reduced-fat pasteurized process cheese during heating and cooling. Int. J. Food Prop. 9(3), 377–393 (2006)

    Article  CAS  Google Scholar 

  38. R. Martínez, P. Torres, M.A. Meneses, J.G. Figueroa, J.A. Pérez-Álvarez, M. Viuda-Martos, Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 135(3), 1520–1526 (2012)

    Article  PubMed  Google Scholar 

  39. S.Y. Chan, W.S. Choo, D.J. Young, X.J. Loh, Pectin as a rheology modifier: origin, structure, commercial production and rheology. Carbohydr. Polym. 161, 118–139 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. S.F. Barbieri, C.L. de Oliveira Petkowicz, R.C.B. de Godoy, H.C.M. de Azeredo, C.R.C. Franco, J.L.M. Silveira, Pulp and jam of gabiroba (Campomanesia xanthocarpa Berg): characterization and rheological properties. Food Chem. 263, 292–299 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical support and guidance provided by Mr. Mayank Varshney (Anton Paar, India) during rheological analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aakriti Kapoor.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in publishing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, A., Kapoor, S. & Aggarwal, P. Rheological, microstructural and biochemical characterisation of fruit pomace jams. Food Measure 17, 4267–4279 (2023). https://doi.org/10.1007/s11694-023-01947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01947-z

Keywords

Navigation