Log in

Rapid and sensitive determination of histamine based on a fluorescent aptamer probe with analogue on carbonized polymer dots

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Histamine (HA) plays an important role in many pathological processes including asthma, diarrhea, and anaphylactic shock. Therefore, accurate and rapid detecting HA is of great significance. In this work, we report on a novel turn-on fluorescent aptasensor for HA detection based on a competitive combination process performed by both HA-specific and HA-analogs of aptamers. The analogue of HA was environmental-friendly obtained on the polymer chains of carbonized polymer dots (CPDs) without complex functionalization, in which the histidine was used as the polymer precursors for the first time (His-CPDs). After modification with aptamer, the analogue of HA on the His-CPDs would combine with the aptamer, leading to the agglomeration of His-CPDs and the fluorescence quenching. In the presence of HA, the HA would compete with the analogue of HA to react with the aptamer, leading to the dissociation of the agglomerates and the recovery of fluorescence. Under optimized conditions, the proposed fluorescent aptasensor can sensitively detect HA in 7 min ranging from 50 ng/mL to 40 µg/mL with the limit of detection (LOD) of 30 ng/mL. More importantly, this proposed fluorescent aptasensor can sensitively detect histamine in human serum and real sardine samples without complex pre-processing, showing great potential in the medical diagnosis of histamine intoxication and anaphylactic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.H. Dale, P.P. Laidlaw, The physiological action of beta-iminazolylethylamine. J. Physiol. 41, 318–344 (1910)

    Article  CAS  PubMed  Google Scholar 

  2. J.F. Huang, R.L. Thurmond, The new biology of histamine receptors. Curr. Allergy Asthma Rep. 8, 21–27 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. D. Doeun, M. Davaatseren, M.S. Chung, Biogenic amines in foods. Food Sci. Biotechnol. 26, 1463–1474 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. in The Food Safety Hazard Guidebook. (2008), pp. 136–171

  5. R.Y. Lin et al, Histamine and tryptase levels in patients with acute allergic reactions: an emergency department-based study. J. Allergy Clin. Immunol. 106, 65–71 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. S. Ichimata, Y. Hata, N. Nishida, An autopsy case of sudden unexpected death with loxoprofen sodium-induced allergic eosinophilic coronary periarteritis. Cardiovasc. Pathol. 44, 107154 (2020)

    Article  PubMed  Google Scholar 

  7. I.G. Fazekas, K. V. J. M. é. i. o. szemle, [Free histamine content as vital reaction in various injuries]. 11, 299–306 (1971)

  8. G.I.J.T.T. i., A.C. Mohammed, A critical overview on the chemistry, clean-up and recent advances in analysis of biogenic amines in foodstuffs. 47, 84–94 (2016)

  9. S. Gone et al., Validation study of MaxSignal((R)) histamine enzymatic assay for the detection of histamine in Fish/Seafood. J. AOAC Int. 101, 783–792 (2018)

    Article  Google Scholar 

  10. S. Ghayyem, F. Faridbod, A fluorescent aptamer/carbon dots based assay for cytochrome c protein detection as a biomarker of cell apoptosis. Methods Appl. Fluoresc 7, 015005 (2018)

    Article  PubMed  Google Scholar 

  11. Z. Saberi, B. Rezaei, A.A. Ensafi, Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide. Mikrochim Acta 186, 273 (2019)

    Article  PubMed  Google Scholar 

  12. A. Khalil, D.N. Mohammad, R. Mohammad, T.S. Mohammad, S.E.J.A.M. Ahmad, A novel amplified double-quenching aptasensor for cocaine detection based on split aptamer and silica nanoparticles. 10.1039.C1038AY00755A- (2018)

  13. K. Mao et al., G-quadruplex–hemin DNAzyme molecular beacon probe for the detection of methamphetamine. 6, (2016)

  14. W. Yao et al., SiC-functionalized fluorescent aptasensor for determination of Proteus mirabilis. Mikrochim Acta 187, 406 (2020). https://doi.org/10.1007/s00604-020-04378-5

    Article  CAS  PubMed  Google Scholar 

  15. M. Famulok, G. Mayer, Aptamer modules as sensors and detectors. Acc. Chem. Res. 44, 1349–1358 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Du, B. Li, E. Wang, “Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers. Acc. Chem. Res. 46, 203–213 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. C. Wang, Q. Zhao, A competitive thrombin-linked aptamer assay for small molecule: aflatoxin B(1). Anal. Bioanal Chem. 411, 6637–6644 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. R. Chinnappan, R. AlZabn, K.M. Abu-Salah, M. Zourob, An aptamer based fluorometric microcystin-LR assay using DNA strand-based competitive displacement. Mikrochim Acta 186, 435 (2019)

    Article  PubMed  Google Scholar 

  19. Z. Cheng, J. Ling, W. Zhang, Y. Ding, Rapid detection of 17beta-estradiol based on shaddock peel derived fluorescent aptasensor for forensic examination. Forensic Sci. Int. 331, 111153 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. N. Rattanachueskul, A. Saning, S. Kaowphong, N. Chumha, L. Chuenchom, Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process. Bioresour Technol. 226, 164–172 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. Q. Zeng, T. Feng, S. Tao, S. Zhu, B. Yang, Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light Sci. Appl. 10, 142 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. Mairal Lerga et al., High Affinity Aptamer for the detection of the Biogenic Amine Histamine. Anal. Chem. 91, 7104–7111 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Ji, J. Zhao, L. Zhao, Fabrication and characterization of magnetic molecularly imprinted polymer based on deep eutectic solvent for specific recognition and quantification of vanillin in infant complementary food. Food Chem. 374, 131720 (2022)

    Article  CAS  PubMed  Google Scholar 

  24. X. Wang et al., Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem. Int. Ed. Engl. 49, 5310–5314 (2010). https://doi.org/10.1002/anie.201000982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. F. Rigodanza et al, Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 12, 2640 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. **a, S. Chen, G.Y. Zou, Y.L. Yu, J.H. Wang, Synthesis of highly stable red-emissive carbon polymer dots by modulated polymerization: from the mechanism to application in intracellular pH imaging. Nanoscale 10, 22484–22492 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. H. Ding, S.B. Yu, J.S. Wei, H.M. **ong, Full-color light-emitting Carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10, 484–491 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. J. Liu et al., One-step Hydrothermal Synthesis of Nitrogen-Doped Conjugated Carbonized Polymer Dots with 31% efficient Red Emission for in vivo imaging. Small 14, e1703919 (2018)

    Article  PubMed  Google Scholar 

  29. C. **a, X. Hai, X.W. Chen, J.H. Wang, Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. Talanta 168, 269–278 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zhang et al., Development and validation of a sample stabilization strategy and a UPLC-MS/MS method for the simultaneous quantitation of acetylcholine (ACh), histamine (HA), and its metabolites in rat cerebrospinal fluid (CSF). J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 879, 2023–2033 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. O. Comas-Baste, M.L. Latorre-Moratalla, R. Bernacchia, M.T. Veciana-Nogues, M. C. Vidal-Carou, New approach for the diagnosis of histamine intolerance based on the determination of histamine and methylhistamine in urine. J. Pharm. Biomed. Anal. 145, 379–385 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. A. Yadav, Y. Upadhyay, R.K. Bera, S.K. Sahoo, Vitamin B(6) cofactors guided highly selective fluorescent turn-on sensing of histamine using beta-cyclodextrin stabilized ZnO quantum dots. Food Chem. 320, 126611 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. M. Dwidar, Y. Yokobayashi, Development of a histamine aptasensor for food safety monitoring. Sci. Rep. 9, 16659 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  34. L.S. John Ho, R. Fogel, J.L. Limson, Generation and screening of histamine-specific aptamers for application in a novel impedimetric aptamer-based sensor. Talanta 208, 120474 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. T.M. Lerga et al, Gold nanoparticle aptamer assay for the determination of histamine in foodstuffs. Mikrochim Acta 187, 452 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81772025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Ding.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, Z., Zhang, Z. et al. Rapid and sensitive determination of histamine based on a fluorescent aptamer probe with analogue on carbonized polymer dots. Food Measure 17, 4695–4704 (2023). https://doi.org/10.1007/s11694-023-01912-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01912-w

Keywords

Navigation