Log in

Development of a novel lateral flow immunoassay based on Fe3O4@MIL-100(Fe) for visual detection of Listeria monocytogenes

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Herein, a novel core-shell material Fe3O4@MIL-100(Fe) was synthesized for develo** a novel LFIA by a two-step solvothermal method with good magnetic properties and high specific surface area. It was used as both magnetic separation and label agents in LFIA for the detection of Listeria monocytogenes. The enrichment of target bacteria can be achieved quickly and easily by direct adsorption of Fe3O4@MIL-100(Fe) on the bacteria and by the action of an applied magnetic field. It was beneficial in separation and concentration of target bacteria from food samples. The Fe3O4@MIL-100(Fe)-bacterial was then detected by the anti-Listeria monocytogenes antibody on the T line under the capillary action of the LFIA strip, resulting in the formation of a visible orange band. Under the optimal conditions, there was a good linear relationship between the intensity of the T line and the quantity of Listeria monocytogenes in the range of 105-108 CFU mL− 1, with a visual detection limit of 3.3 × 106 CFU mL− 1. The strip showed strong specificity for L. monocytogenes, and the detection could be finished in 45 min, without the needing of pre-treatment. Thus, the proposed Fe3O4@MIL-100(Fe)-based strip was simple prepared, label-free, low cost, rapid and convenience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. X.Cui, Q.R.**ong, Y.H.**ong, Establishing of a method combined immunomagnetic separation with colloidal gold lateral flow assay and its application in rapid detection of Escherichia coli O157:H7, Chin. J. Anal. Chem. 41(12), 1812–1816 (2013). https://doi.org/10.19756/j.issn.0253-3820.210608

    Article  CAS  Google Scholar 

  2. X.Y. Huang, T. Huang, X.J. Li, Flower-like gold nanoparticles-based immunochromatographic test strip for rapid simultaneous detection of fumonisin B-1 and deoxynivalenol in chinese traditional medicine. J. Pharm. Biomed. Anal. 177, 112895 (2020). https://doi.org/10.1016/j.jpba.2019.112895

    Article  CAS  PubMed  Google Scholar 

  3. Y. Li, Y.F. Zhou, X.R.Chen, Comparison of three sample addition methods in competitive and sandwich colloidal gold immunochromatographic assay. Anal. Chim. Acta 1094, 90–98 (2020). https://doi.org/10.1016/j.aca.2019.09.079

    Article  CAS  PubMed  Google Scholar 

  4. A. Thongprachum, P. Khamrin, N.Chaimongkol, Evaluation of an immunochromatography method for rapid detection of noroviruses in clinical specimens in thailand. J. Med. Virol. 82(12), 2106–2109 (2010). https://doi.org/10.1002/jmv.21916

    Article  PubMed  Google Scholar 

  5. X.Q. Gong, B. Zhang, J.F. Piao, High sensitive and multiple detection of acute myocardial infarction biomarkers based on a dual-readout immunochromatography test strip. Nanomedicine 14(4), 1257–1266 (2018). https://doi.org/10.1016/j.nano.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  6. T. Peng, X.Y. Pei, Y.J. Zheng, Performance of fluorescence microspheres-based immunochromatography in simultaneous monitoring of five quinoxalines. Food Agric. Immunol. 28(6), 1544–1554 (2017). https://doi.org/10.1080/09540105.2017.1354357

    Article  CAS  Google Scholar 

  7. X.Y. Pei, Q. Wang, X.M. Li, Provision of ultrasensitive quantitative gold immunochromatography for rapid monitoring of olaquindox in animal feed and water samples. Food Anal. Methods 9(7), 1919–1927 (2016). https://doi.org/10.1007/s12161-015-0360-y

    Article  Google Scholar 

  8. Y.Y. Zeng, D.M. Liang, P.M. Zheng, A simple and rapid immunochromatography test based on readily available filter paper modified with chitosan to screen for 13 sulfonamides in milk. J. Dairy. Sci. 104(1), 126–133 (2021). https://doi.org/10.3168/jds.2020-18987

    Article  CAS  PubMed  Google Scholar 

  9. A. Ashuo, W.J. Zou, J.J. Fu, High throughput detection of antibiotic residues in milk by time-resolved fluorescence immunochromatography based on QR code. Assessment 37(9), 1481–1490 (2020). https://doi.org/10.1080/19440049.2020.1778192

    Article  CAS  Google Scholar 

  10. Y.M. Tian, T. Bu, M. Zhang, Metal-polydopamine framework based lateralflow assay for high sensitive detection of tetracycline in food samples. Food Chem. 339, 127854 (2021). https://doi.org/10.1016/j.foodchem.2020.127854

    Article  CAS  PubMed  Google Scholar 

  11. R. Li, T. Bu, Y.J. Zhao, Polydopamine coated zirconium metal-organic frameworks-based immunochromatographic assay for highly sensitive detection of deoxynivalenol. Anal. Chim. Acta 1131, 109–117 (2020). https://doi.org/10.1016/j.aca.2020.07.052

    Article  CAS  PubMed  Google Scholar 

  12. B. Shen, Y.F. Zheng, X.Y. Zhang, Clinical evaluation of a rapid colloidal gold immunochromatography assay for SARS-Cov-2 IgM/IgG. Am. J. Transl Res. 12(4), 1348–1354 (2020). https://doi.org/10.1016/j.medntd.2021.100084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J.Y. Wang, M.H. Chen, Z.C.Sheng, Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157:H7 in milk, Rsc Adv. 2015, 5(76), 62300–62305. https://doi.org/10.1039/c5ra13279g

  14. Y. Wang, R.G. Deng, G.P. Zhang, Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test. J. Agric. Food Chem. 63(8), 2172–2178 (2015). https://doi.org/10.1021/jf5052128

    Article  CAS  PubMed  Google Scholar 

  15. Y.R. **n, R.L. Yang, Y. Qu, Novel, Highly sensitive, and specific assay to monitor acute myocardial infarction (ami) by the determination of cardiac troponin i (ctni) and heart-type fatty acid binding protein (h-fabp) by a colloidal gold-based immunochromatographic test strip. Anal. Lett. 54(8), 1329–1350 (2021). https://doi.org/10.1080/00032719.2020.1802594

    Article  CAS  Google Scholar 

  16. C.L. Xu, H.T. Wang, C.F. Peng, Colloidal gold-based immumochromatographic assay for detection of diethylstilbestrol residues. Biome Chromatogr. 20(12), 1390–1394 (2006). https://doi.org/10.1002/bmc.714

    Article  CAS  Google Scholar 

  17. X.F. Hu, G.P. Zhang, An immunochromatographic test strip to detect ochratoxin a and zearalenone simultaneously. Methods Mol. Biol. 1600, 95–105 (2017). https://doi.org/10.1007/978-1-4939-6958-6_9

    Article  CAS  PubMed  Google Scholar 

  18. Z.L. Wang, R. Cai, Z.P.Gao, Immunomagnetic separation: an effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr. Rev. Food Sci. Food Saf. 19(6), 3802–3824 (2020). https://doi.org/10.1111/1541-4337.12656

    Article  CAS  PubMed  Google Scholar 

  19. A.A. Mohammadi, Z. Niazi, K.Heidari, Nickel and iron-based metal-organic frameworks for removal of organic and inorganic model contaminants. Environ. Res. 212, 113164 (2022). https://doi.org/10.1016/j.envres.2022.113164

    Article  CAS  PubMed  Google Scholar 

  20. S.Q. Li, Y.F. Chen, X.K.Pei, Water purification: Adsorption over metal-organic frameworks. Chin. J. Chem. 34(2), 175–185 (2016). https://doi.org/10.1002/cjoc.201500761

    Article  CAS  Google Scholar 

  21. K.Suresh, A.J.Matzger, Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal-organic framework (MOF). Angew Chem. Int. Ed. 58(47), 16790–16794 (2019). https://doi.org/10.1002/anie.201907652

    Article  CAS  Google Scholar 

  22. M.R. Cai, L.Y. Qin, L.T.You, functionalization of MOF-5 with mono-substituents: effects on drug delivery behavior. Rsc Adv. 10(60), 36862–36872 (2020). https://doi.org/10.1039/d0ra06106a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. H.Sun,X.L. Yu, X.Y.Ma, MnOx-CeO2 catalyst derived from metal-organic frameworks for toluene oxidation. Catal. Today 355, 580–586 (2020). https://doi.org/10.1016/j.cattod.2019.05.062

    Article  CAS  Google Scholar 

  24. N. T.Arai.H.Kanoh Kawasaki, Magnetically separable cu-carboxylate mof catalyst for the henry reaction. Synlett 10, 1549–1553 (2012). https://doi.org/10.1055/s-0031-1290935

    Article  CAS  Google Scholar 

  25. Q.F. Sun, J.H. Cheng, R.Q. .Lin, A novel multiplex PCR method for simultaneous identification of hypervirulent Listeria monocytogenes clonal complex 87 and CC88 strains in China. Int. J. Food Microbiol. 366, 109558 (2022). https://doi.org/10.1016/j.ijfoodmicro.2022.109558

    Article  CAS  PubMed  Google Scholar 

  26. A.A.C. Cavalcanti, C.H. Limeira, I.N.D. Siqueira, The prevalence of Listeria monocytogenes in meat products in Brazil: a systematic literature review and meta-analysis. Res. Vet. Sci. 145, 169–176 (2022). https://doi.org/10.1016/j.rvsc.2022.02.015

    Article  CAS  PubMed  Google Scholar 

  27. C. Xedzro, K. Tano-Debrah, H.Nakano, Antibacterial efficacies and time-kill kinetics of indigenous ghanaian spice extracts against Listeria monocytogenes and some other food-borne pathogenic bacteria. Microbiol. Res. 258, 126980 (2022). https://doi.org/10.1016/j.micres.2022.126980

    Article  CAS  PubMed  Google Scholar 

  28. X.Y. Wu, Q.M. Chen, C.Y. Yang, An enhanced visual detection assay for Listeria monocytogenes in food based on isothermal amplified peroxidase-mimicking catalytic beacon, Food. Control. 2022, 134, 108721. https://doi.org/1016/j.foodcont.2021.108721

  29. J.Du, K.Liu, J.L.Liu, A novel lateral flow immunoassay strip based on a label-free magnetic Fe3O4@UiO-66-NH2 nanocomposite for rapid detection of Listeria monocytogenes. Anal. Methods 14(24), 2423–2430 (2022). https://doi.org/10.1039/d2ay00506a

    Article  CAS  Google Scholar 

  30. J. Du, X. Chen, K.Liu, Dual recognition and highly sensitive detection of Listeria monocytogenes in food by fluorescence enhancement effect based on Fe3O4@ZIF-8-aptamer. Sens. Actuat B-Chem 360, 131654 (2022). https://doi.org/10.1016/j.snb.2022.131654

    Article  CAS  Google Scholar 

  31. S.Aslam,J.B. Zeng, F.Subhan, In situ one-step synthesis of Fe3O4@MIL-100(Fe) core-shells for adsorption of methylene blue from water. J. Colloid Interface Sci. 505, 186–195 (2017). https://doi.org/10.1016/j.jcis.2017.05.090

    Article  CAS  PubMed  Google Scholar 

  32. N. F.Chang.S.Memon Memon, Removal of emerging contaminants from water by using FeMOF composite as a sorbent. J Iran. Chem Soc 18(12), 3249–3255 (2021). https://doi.org/10.1007/s13738-021-02264-2

    Article  CAS  Google Scholar 

  33. X.F. Chen, N. Ding, H.Zang, Fe3O4@MOF core–shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples. J. Chromatogr. A 1304, 241–245 (2013). https://doi.org/10.1016/j.chroma.2013.06.053

    Article  CAS  PubMed  Google Scholar 

  34. Y.J. Chen, Z.C. **ong, L. Peng, Facile preparation of core – shell magnetic metal – organic framework nanoparticles for the selective capture of phosphopeptides. Acs Appl. Mater. Inter 7(30), 16338–16347 (2015). https://doi.org/10.1021/acsami.5b03335

    Article  CAS  Google Scholar 

  35. Z.L. Wu, Y.P. Wang, Z.K. **ong, Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine. Appl. Catal. B 277, 119136 (2020). https://doi.org/10.1016/j.apcatb.2020.119136

    Article  CAS  Google Scholar 

  36. C.F. Zhang, L.G. Qiu, F. Ke, A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J. Mater. Chem. A 1(45), 14329–14334 (2013). https://doi.org/10.1039/c3ta13030d

    Article  CAS  Google Scholar 

  37. Q.R. Liu, C.X. Yao, J.M.Liu, An efficient method to enrich, detect and remove bisphenol A based on Fe3O4@MIL-100(Fe). Microchem J. 165, 106168 (2021). https://doi.org/10.1016/j.microc.2021.106168

    Article  CAS  Google Scholar 

  38. D.B. Zhou, Y.B. **ao, F.Han, Magnetic solid-phase extraction based on sulfur-functionalized magnetic metal-organic frameworks for the determination of methylmercury and inorganic mercury in water and fifish samples. J. Chromatogr. A 1654, 462465 (2021). https://doi.org/10.1016/j.chroma.2021.462465

    Article  CAS  PubMed  Google Scholar 

  39. Q.X. Yang, Q.Q. Zhao, S.S. Ren, Fabrication of core-shell Fe3O4@MIL–100(fe) magnetic microspheres for the removal of cr(VI) in aqueous solution. J. Solid State Chem. 244, 25–30 (2016). https://doi.org/10.1016/j.jssc.2016.09.010

    Article  CAS  Google Scholar 

  40. C.M. Cheng, Y.H. Wen, X.F. Xu, Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size. J. Mater. Chem. 19(46), 8782–8788 (2009). https://doi.org/10.1039/b910832g

    Article  CAS  Google Scholar 

  41. S.Dadfarnia, A.M.H.Shabani, S.E.Moradi, Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent. Appl. Surf. Sci. 330, 85–93 (2015). https://doi.org/10.1016/j.apsusc.2014.12.196

    Article  CAS  Google Scholar 

  42. J.X. Fan, D.Y. Chen, N.J. Li, Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100 (Fe) coreeshell bio-nanocomposites, Chemosphere. 2018, 191, 315–323. https://doi.org/10.1016/j.chemosphere.2017.10.042

  43. J.B. Xu, Y.Y. **ng, Y.T. Liu, Facile in situ microwave synthesis of Fe3O4@MIL-100(Fe) exhibiting enhanced dual enzyme mimetic activities for colorimetric glutathione sensing. Anal. Chim. Acta 1179, 338825 (2021). https://doi.org/10.1016/j.aca.2021.338825

    Article  CAS  PubMed  Google Scholar 

  44. F. Ke, L.G. Qiu, Y.P. Yuan, Fe3O4@MOF core–shell magnetic microspheres with a designable metal–organic framework shell. J. Mater. Chem. 22(19), 9497–9500 (2012). https://doi.org/10.1039/c2jm31167d

    Article  CAS  Google Scholar 

  45. M.Ahmaruzzaman J.Darabdhara, Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. Chemosphere 304, 135261 (2022). https://doi.org/10.1016/j.chemosphere.2022.135261

    Article  CAS  Google Scholar 

  46. S. H.Yang.H.Zhao Hu, High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution. J. Hazard. Maters 416, 126046 (2021). https://doi.org/10.1016/j.jhazmat.2021.126046

    Article  CAS  Google Scholar 

  47. E. Nyarko, C. Donnelly, Differentiation of different mixed listeria strains and also acid-injured, heat-injured, and repaired cells of Listeria monocytogenes using fourier transform infrared spectroscopy. J. Food Protect 78(3), 540–548 (2015). https://doi.org/10.4315/0362-028X.JFP-14-160

    Article  CAS  Google Scholar 

  48. T.H. Kim, J. Park, C.J.Kim,fully integrated lab-on-a-Disc for nucleic acid analysis of food-borne pathogens. Anal. Chem. 86(8), 3841–3848 (2014). https://doi.org/10.1021/ac403971h

    Article  CAS  PubMed  Google Scholar 

  49. M. Varshney, L.J. Yang, X.L.Su, Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J. Food Protect 68(9), 1804–1811 (2005). https://doi.org/10.4315/0362-028X-68.9.1804

    Article  CAS  Google Scholar 

  50. M. Fuentes, C. Mateo, J.M. Guisan, Preparation of inert magnetic nano-particles for the directed immobilization of antibodies. Biosens. Bioelectron. 20(7), 1380–1387 (2005). https://doi.org/10.1016/j.bios.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  51. B. Jagadeesan, V.B. Schmid, B.Kupski, Detection of Listeria spp. and L. monocytogenes in pooled test portion samples of processed dairy products, Int. J. Food. Microbiol. 2019, 289,30–39. https://doi.org/10.1016/j.ijfoodmicro.2018.08.017

  52. H.X. Che, B. Tian, L.N. Bai, Development of a test strip for rapid detection of lactoperoxidase in raw milk. J. Zhejiang Univ-Sc B 16(8), 672–679 (2015). https://doi.org/10.1631/jzus.B1400359

    Article  CAS  Google Scholar 

  53. R. Sharma, A. Verma, N. Shinde, Adulteration of cow’s milk with buffalo’s milk detected by an on-site carbon nanoparticles-based lateral flow immunoassay. Food Chem. 351, 129311 (2021). https://doi.org/10.1016/j.foodchem.2021.129311

    Article  CAS  PubMed  Google Scholar 

  54. S. Ueda, M. Iwase, Y.Kuwabara, Evaluation of immunochromatography for the rapid and specific identification of Listeria monocytogenes from food. Biocontrol Sci. 18(3), 157–161 (2013). https://doi.org/10.4265/bio.18.157

    Article  PubMed  Google Scholar 

  55. S.J. Wu, J.Du,Q.S. **ang, Solvothermal synthesis of α-Fe2O3 polyhedrons and its application in an immunochromatographic strip test for the detection of foodborne pathogen Listeria monocytogenes. Nanotechnology 32(8), 085502 (2021). https://doi.org/10.1088/1361-6528/abcb30

    Article  CAS  PubMed  Google Scholar 

  56. Q.R. Li, S. Zhang, Y.X. Cai, Rapid detection of Listeria monocytogenes using fluorescence immunochromatographic assay combined with immunomagnetic separation technique. Int. J Food Scie Tech 52(7), 1559–1566 (2017). https://doi.org/10.1111/ijfs.13428

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Major Special Project on Public Welfare of Henan Province [grant number 201300110100].

Author information

Authors and Affiliations

Authors

Contributions

Juan Du: conceptualization, methodology and writing-review&editing; Kai Liu: investigation, data collection, formal analysis and writing-original draft; Jialei Liu: material preparation and formal analysis; Dianbo Zhao:material preparation and formal analysis; Yanhong Bai: funding acquisition, resources, project administration and supervision.

Corresponding author

Correspondence to Yanhong Bai.

Ethics declarations

Conflict of interest disclosure

The authors declared that they have no conflicts of interest.

Ethics approval statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Permission to reproduce material from other sources

This article does not contain material from other sources.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Liu, K., Liu, J. et al. Development of a novel lateral flow immunoassay based on Fe3O4@MIL-100(Fe) for visual detection of Listeria monocytogenes. Food Measure 17, 3482–3492 (2023). https://doi.org/10.1007/s11694-023-01900-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01900-0

Keywords

Navigation