Log in

Impact of cooking treatments on nutritional quality, phytochemical composition and antioxidant properties of Lepidium sativum L. seeds

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Lepidium sativum seeds were submitted to different cooking treatments (Dry heating, micowaving, grilling) and the nutritional value, the phytochemical profile and the antioxidant properties were evaluated. Domestic cooking treatments resulted in a reduction of proteins (5.07–9.44%), gross energy (2.21–3.24%), sodium (7.30-43.35%), potassium (3.34–6.76%), tanins (8.70-19.57%) and flavonoids (34.41–53.76%) and in an increase of ash content (3.39–7.16%), the DPPH scavenging activity (11.25–32.60% and the ferric reducing power (25.27–28.55%). Also, an increase of carbohydrates (4.09, 11.50%) and phosphorus (13.12, 13.13%) and a decrease of calcium (3.56, 6.50%) and phytates (9.65, 12.07%) were obtained by dry heating and grilling. Moreover, microwaving and grilling caused a decrease of iron content (23.60, 20.63%) and an augmentation of the total polyphenol content (9.37, 19.16%) and the total antioxidant capacity (16.05, 16.50%). Globally, dry heating revealed amelioration of nutritional quality and antioxidant properties and maximum nutrient and antioxidants retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A.M. Abdel-Aty, W.H. Salama, A.S. Fahmy, S.A. Mohamed, Sci. Hortic. (2019) https://doi.org/10.1016/j.scienta.2018.10.062

    Article  Google Scholar 

  2. T. Jain, K. Grover, G. Kaur, Food Chem. (2016) https://doi.org/10.1016/j.foodchem.2016.07.034

  3. M.F. Ramadan, H.F. Oraby, in Nuts and seeds in health and disease prevention, ed By V.R. Preedy, R.R. Watson (Academic Press, 2020) p. 273

  4. M. Zia-Ul-Haq, S. Ahmad, L. Calani, T. Mazzeo, D. Del Rio, N. Pelligrini, V. De Feo, Molecules (2012) https://doi.org/10.3390/molecules170910306

  5. K. Rafińska, P. Pomastowski, J. Rudnicka, A. Krakowska, A. Maruśka, M. Narkute, B. Buszewski, Food Chem. (2019) https://doi.org/10.1016/j.foodchem.2019.03.025

    Article  PubMed  Google Scholar 

  6. T. Getahun, V. Sharma, N. Gupta, Ind. Crops Prod. (2020) https://doi.org/10.1016/j.indcrop.2020.112876

    Article  Google Scholar 

  7. M. van Boekel, V. Fogliano, N. Pellegrini, C. Stanton, G. Scholz, S. Lalljie, V. Somoza, D. Knorr, P.R. Jasti, G. Eisenbrand, Mol. Nutr. Food Res. (2010) https://doi.org/10.1002/mnfr.200900608

    Article  PubMed  Google Scholar 

  8. C. Zhao, Y. Liu, S. Lai, H. Cao, Y. Guan, W. San Cheang, B. Liu, K. Zhao, S. Miao, C. Riviere, E. Capanoglu, J. **a, Trends Food Sci. Technol. (2019) https://doi.org/10.1016/j.tifs.2019.01.004

    Article  Google Scholar 

  9. J. Tian, J. Chen, X. Ye, S. Chen, Food Chem. (2016) https://doi.org/10.1016/j.foodchem.2016.01.120

  10. C. Iborra-Bernad, D. Philippon, P. García-Segovia, J. Martínez-Monzó, LWT - Food Sci. Technol. (2013) https://doi.org/10.1016/j.lwt.2012.12.001

    Article  Google Scholar 

  11. M. Zaupa, L. Calani, D. Del Rio, F. Brighenti, N. Pellegrini,. Food Chem. (2015) https://doi.org/10.1016/j.foodchem.2015.04.055

    Article  PubMed  Google Scholar 

  12. G.B. Martínez-Hernández, F. Artés-Hernández, A. Gómez Perla, LWT-Food Sci. Technol. (2013) https://doi.org/10.1016/j.lwt.2012.07.014

    Article  Google Scholar 

  13. N. Agarwal, S. Sharma, IJTK (2013) http://nopr.niscpr.res.in/handle/123456789/22182

  14. B. Jiang, R. Tsao, Y. Li, M. Miao, Food Safety: Food Analysis technologies/techniques (Encyclopedia of Agriculture and Food Systems (Elsevier, 2014), pp. 273–288

  15. V.O. Aina, B. Sambo, A. Zakari, H.M.S. Haruna, K. Umar, R.M. Akinboboye, A. Mohammed, Adv. J. Food Sci. Technol. 4, 225 (2012)

    Google Scholar 

  16. P. Fleury, M. Leclerc, Bull. Soc. Chim. Biol. 25, 201 (1943)

    CAS  Google Scholar 

  17. L. Young, Biochem. J. (1936) https://doi.org/10.1042/bj0300252

    Article  PubMed Central  PubMed  Google Scholar 

  18. Y. Sun, L.Y. Jan, Y.N. Jan, Development (1998) https://doi.org/10.1242/dev.125.18.3731

  19. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic 16, 144 (1965)

    Article  CAS  Google Scholar 

  20. V. Dewanto, X. Wu, K.K. Adom, R.H. Liu, J. Agric. Food Chem. (2002) https://doi.org/10.1021/jf0115589

    Article  PubMed  Google Scholar 

  21. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT - Food Sci. Technol. (1995) https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  22. M. Oyaizu, J. Japan, Nutr. (1986) https://doi.org/10.5264/eiyogakuzashi.44.307

  23. P. Prieto, M. Pineda, M. Aguilar, Anal. Biochem. (1999) https://doi.org/10.1006/abio.1999.4019

    Article  PubMed  Google Scholar 

  24. I.I. Ijeh, C.E. Ejike, O.M. Nkwonta, B.C. Njoku, J. Appl. Sci. Environ. Manag. (2010) https://doi.org/10.4314/jasem.v14i4.63314

  25. K. Eichner, Prog. Food Nutr. Sci. (1981) https://doi.org/10.1007/978-1-4757-9351-2_20

    Article  Google Scholar 

  26. B. Zhang, Z. Deng, Y. Tang, P.X. Chen, R. Liu, D. Ramdath, Q. Liu, M. Hernandez, R. Tsao, J. Agric. Food Chem. (2014) https://doi.org/10.1021/jf504181r

  27. S.O. Igbedioh, K.T. Olugbemi, M.A. Akpapunan, Food Chem. (1994) https://doi.org/10.1016/0308-8146(94)90112-0

  28. I. Wainaina, E. Wafula, D. Sila, C. Kyomugasho, T. Grauwet, A. Van Loey, M. Hendrickx, Compr. Rev. Food Sci. Food Saf. (2021) https://doi.org/10.1111/1541-4337.12770

    Article  PubMed  Google Scholar 

  29. L. Chin, N. Therdthai, W. Ratphitagsanti, Appl. Food Res. (2022) https://doi.org/10.1016/j.afres.2022.100079

    Article  Google Scholar 

  30. O.T. Adepoju, O. Boyejo, P.O. Adeniji, Food Chem. (2018) https://doi.org/10.1016/j.foodchem.2016.10.071

  31. C. Lόpez-Berenguer, M. Carvajal, D.A. Moreno, C. Garćia-Viguera, J. Agric. Food Chem. (2007)

  32. M. Schnepf, J. Driskell, J. Food Qual. (1994) https://doi.org/10.1111/j.1745-4557.1994.tb00135.x

  33. A.M. Santos Lima, L.O. dos Santos, J.M. David, S.L. Costa, Ferreira, Food Chem. (2019) https://doi.org/10.1016/j.foodchem.2017.12.042

    Article  PubMed  Google Scholar 

  34. F. Medini, M. Ben Hamida, A. Atwi, R. Ksouri, J. New. Sci. 54, 3594 (2018)

    Google Scholar 

  35. L.J. Corzo-Ríos, X.M. Sánchez-Chino, A. Cardador-Martínez, J. Martínez-Herrera, C. Jiménez-Martínez, Int. J. Gastron Food Sci. (2020) https://doi.org/10.1016/j.ijgfs.2020.100206

    Article  Google Scholar 

  36. M. El-Suhaibani, M.A. Ahmed, M.A. Osman, J. King Saud Univ. Sci. (2020) https://doi.org/10.1016/j.jksus.2020.02.021

  37. P. Sahni, S. Sharma, LWT - Food Sci. Technol. (2020) https://doi.org/10.1016/j.lwt.2020.109890

  38. R. Suhag, A. Dhiman, G. Deswal, D. Thakur, V.S. Sharanagat, K. Kumar, V. Kumar, LWT - Food Sci. Technol. (2021) https://doi.org/10.1016/j.lwt.2021.111960

    Article  Google Scholar 

  39. B.K. Kala, V.R. Mohan, Int. Food Res. J. 19(3), 961–969 (2012)

    CAS  Google Scholar 

  40. T.M. Rababah, K.I. Ereifej, R.B. Esoh, M.H. Al-U’datt, M.A. Alrababah, W. Yang, Nat. Prod. Res. (2011) https://doi.org/10.1080/14786419.2010.488232

    Article  PubMed  Google Scholar 

  41. J. Nickel, L.P. Spanier, F.T. Botelho, M.A. Gularte, E. Helbig, Food Chem. (2016) https://doi.org/10.1016/j.foodchem.2016.04.031

    Article  PubMed  Google Scholar 

  42. M. Jeż, W. Wiczkowski, D. Zielińska, I. Białobrzewski, W. Błaszczak, Food Chem. (2018) https://doi.org/10.1016/j.foodchem.2018.04.060

    Article  PubMed  Google Scholar 

  43. C.I. Teixeira-Guedes, D. Oppolzer, A.I. Barrosc, C. Pereira-Wilson, LWT-Food Sci. Technol. (2019) https://doi.org/10.1016/j.lwt.2019.01.010

  44. A.C.S. de Lima, J.D. da Rocha Viana, L.B. de Sousa Sabino, L.M.R. da Silva, N.K.V. da Silva, P.H.M. de Sousa. LWT - Food Sci. Technol. (2016) https://doi.org/10.1016/j.lwt.2016.07.023

  45. G. Nagarani, A. Abirami, P. Nikitha, P. Siddhuraju, Asian Pac. J. Trop. Biomed. (2014) https://doi.org/10.12980/APJTB.4.2014C1108

    Article  PubMed Central  PubMed  Google Scholar 

  46. B. Xu, K. Sam, C. Chang, J. Agric. Food Chem. (2009) https://doi.org/10.1021/jf900695s

  47. N. Pellegrini, E. Chiavaro, C. Gardana, T. Mazzeo, D. Contino, M. Gallo, P. Riso, V. Fogliano, M. Porrini, J. Agric. Food Chem. (2010) https://doi.org/10.1021/jf904306r

    Article  PubMed  Google Scholar 

  48. K.H. Abd El-Salam, A.O. Toliba, G.A. El-Shourbagy, Sh.E. El-Nemr, Food Dairy. Home Econ. Res. (2019) https://doi.org/10.21608/zjar.2019.48168

    Article  Google Scholar 

  49. R. Randhir, Y.I. Kwon, K. Shetty, Food Sci. Emerg. Technol. (2008) https://doi.org/10.1016/j.ifset.2007.10.004

    Article  Google Scholar 

  50. B. Harakotr, B. Suriharn, R. Tangwongchai, M.P. Scott, K. Lertrat, Food Chem. (2014) https://doi.org/10.1016/j.foodchem.2014.05.069

    Article  PubMed  Google Scholar 

  51. N. Turkmen, F. Sari, Y.S. Velioglu, Food Chem. 93, 713–718 (2005). https://doi.org/10.1016/j.foodchem.2004.12.038

    Article  CAS  Google Scholar 

  52. M. Ben Farhat, R. Chaouch-Hamada, J.A. Sotomayor, A. Landoulsi, M.J. Jordán, Ind. Crops Prod. (2014) https://doi.org/10.1016/j.indcrop.2014.01.001

  53. L. Manzocco, S. Calligaris, D. Mastrocola, M.C. Nicoli, C.R. Lerici, Trends Food Sci. Technol. (2001) https://doi.org/10.1016/S0924-2244(01)00014-0

    Article  Google Scholar 

Download references

Acknowledgements

The current investigation was supported by program of encouragement of young researchers “19PEJC07-27” of the tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouna Ben Farhat.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhaj Amor, G., Ben Farhat, M., Beji-Serairi, R. et al. Impact of cooking treatments on nutritional quality, phytochemical composition and antioxidant properties of Lepidium sativum L. seeds. Food Measure 17, 2944–2952 (2023). https://doi.org/10.1007/s11694-023-01851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01851-6

Keywords

Navigation