Log in

Stability of antioxidant and hypoglycemic activities of peptide fractions of Maize (Zea mays L.) under different processes

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Maize proteins are considered of low nutritional value, these proteins when hydrolyzed become a good source of peptides with important biological activity and can be used as supplements or food additives. The objective of this research was to prepare bioactive fractions of maize proteins and evaluate the effect of digestive enzymes (pepsin and pancreatin), temperature and pH on their antioxidant, hypoglycemic activities and their techno-functional properties. In a first stage, the biological activities of total protein hydrolysates of maize, zeins and non-zeins were evaluated. It was observed that the hydrolysate with the highest values of antioxidant (ABTS = 37.09%; DPPH = 33.76%) and hypoglycemic (α-amylase = 46.14%: α-glucosidase = 46.80%) activity was the total protein hydrolysate. In a second stage, the total protein hydrolyzate was fractionated by ultrafiltration to obtain four fractions of different molecular weight (> 10 kDa, 5–10 kDa, 3–5 kDa, and < 3 kDa). The fraction < 3 kDa stood out for presenting better values of ABTS (64.68%), DPPH (40.09%), α-amylase (55.22%) and α-glucosidase (37.21%). This fraction conserved its biological activity when subjected to gastrointestinal digestion and sudden changes in temperature and pH. In addition, this fraction has good techno-functional properties and could be used as a supplement or additive in food formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Ramírez, M.F. Quintero-Soto, J.J. Rochín-Medina, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-020-00416-1

    Article  Google Scholar 

  2. N. Gonzalez-Cortes, Rev. Mex. Cienc. Agríc. 7, 3 (2016)

    Google Scholar 

  3. M.F. Quintero-Soto, J. Chávez-Ontiveros, J.A. Garzón-Tiznado, N.Y. Salazar-Salas, K.V. Pineda-Hidalgo, F. Delgado-Vargas, J.A. López-Valenzuela, J. Food Sci. (2021). https://doi.org/10.1111/1750-3841.15778

    Article  Google Scholar 

  4. A. Montoya-Rodríguez, E.I. Osuna-Gallardo, F. Cabrera-Chávez, J. Milán-Carrillo, C. Reyes-Moreno, E.M. Milán-Noris, E.O. Cuevas-Rodríguez, S. Mora-Rochín, Biotecnia (2020). https://doi.org/10.1863/biotecnia.v22i2.1257

    Article  Google Scholar 

  5. M.C. Delgado, M. Galleano, M.C. Añón, V.A. Tironi, Plant Foods Hum. Nutr. (2015). https://doi.org/10.1007/s11130-014-0457-2

    Article  Google Scholar 

  6. M.E. Oseguera-Toledo, E. Gonzalez De Mejia, S.L. Amaya-Llano, Food Res. Int. (2015). https://doi.org/10.1016/j.foodres.2015.07.046

    Article  Google Scholar 

  7. H.L. Jang, A.M. Liceaga, K.Y. Yoon, J. Funct. Foods (2016). https://doi.org/10.1016/j.jff.2015.11.020

    Article  Google Scholar 

  8. A. Karimi, M.H. Azizi, H. Ahmadi Gavlighi, Food Sci. Nutr. (2020). https://doi.org/10.1002/fsn3.1529

    Article  Google Scholar 

  9. R. Vilcacundo, C. Martínez-Villaluenga, B. Hernández-Ledesma, J. Funct. Foods (2017). https://doi.org/10.1016/j.jff.2017.06.024

    Article  Google Scholar 

  10. R. Hu, G. Chen, Y. Li, Molecules (2020). https://doi.org/10.3390/molecules25184091

    Article  Google Scholar 

  11. N. Tang, H. Zhuang, J. Food Sci. (2014). https://doi.org/10.1111/1750-3841.12686

    Article  Google Scholar 

  12. Y. Xu, M. Galanopoulos, E. Sismour, S. Ren, Z. Mersha, P. Lynch, A. Almutaimi, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-019-00296-0

    Article  Google Scholar 

  13. T.J. Ashaolu, R.M. Khoder, M.S. Alkaltham, A. Nawaz, N. Walayat, M. Umair, I. Khalifa, Food Biosci. (2022). https://doi.org/10.1016/j.fbio.2022.101705

    Article  Google Scholar 

  14. J.C. Zamorano-Apodaca, C.O. García-Sifuentes, E. Carvajal-Millán, B. Vallejo-Galland, S.M. Scheuren-Acevedo, M.E. Lugo-Sánchez, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.127350

    Article  Google Scholar 

  15. J.C. Wallace, M.A. Lopes, E. Paiva, B.A. Larkins, Plant Physiol. (1990). https://doi.org/10.1104/pp.92.1.191

    Article  Google Scholar 

  16. L. Mojica, K. Chen, E. González De Mejía, J. Food Sci. (2015). https://doi.org/10.1111/1750-3841.12726

    Article  Google Scholar 

  17. K. Ramírez, K.V. Pineda-Hidalgo, J.J. Rochín-Medina, LWT- Food Sci. Technol. (2021). https://doi.org/10.1016/j.lwt.2020.110685

    Article  Google Scholar 

  18. S. Nalinanon, S. Benjakul, H. Kishimura, F. Shahidi, Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2010.07.089

    Article  Google Scholar 

  19. J.V. Félix-Medina, J. Montes-Ávila, C. Reyes-Moreno, J.X.K. Perales-Sánchez, M.A. Gómez-Favela, E. Aguilar-Palazuelos, R. Gutiérrez-Dorado, LWT-Food Sci. Technol. (2020). https://doi.org/10.1016/j.lwt.2020.109172

    Article  Google Scholar 

  20. I. Gonzalez-Gongora, A. Taron-Dunoyer, L.A. Garcia-Zpateiro, Contemp. Eng. Sci. (2018). https://doi.org/10.1298/ces.2018.8114

    Article  Google Scholar 

  21. G. Moro, J. Habben, B. Hamaker, B. Larkins, Crop. Sci. (1996). https://doi.org/10.2135/CROPSCI1996.0011183X003600060039X

    Article  Google Scholar 

  22. N.Y. Salazar-Salas, K.V. Pineda-Hidalgo, J. Chavez-Ontiveros, R. Gutierrez-Dorado, C. Reyes-Moreno, L.A. Bello-Pérez, B.A. Larkins, J.A. Lopez-Valenzuela, J. Cereal Sci. (2014). https://doi.org/10.1016/j.jcs.2014.04.004

    Article  Google Scholar 

  23. X. Liu, X. Zheng, Z. Song, X. Liu, N.K. Kopparapu, X. Wang, Y. Zheng, J. Funct. Foods (2015). https://doi.org/10.1016/j.jff.2014.10.013

    Article  Google Scholar 

  24. D.-X. **, X.-L. Liu, X.-Q. Zheng, X.-J. Wang, J.-F. He, Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2016.02.119

    Article  Google Scholar 

  25. N. Ye, P. Hu, S. Xu, M. Chen, S. Wang, J. Hong, T. Chen, T. Cai, J. Food Qual. (2018). https://doi.org/10.1155/2018/8579094

    Article  Google Scholar 

  26. H.-M. Li, X.I.N. Hu, P. Guo, P. Fu, L.I. Xu, X.-Z. Zhang, J. Food Biochem. (2010). https://doi.org/10.1111/j.1745-4514.2009.00292.x

    Article  Google Scholar 

  27. M. Memarpoor-Yazdi, H. Mahaki, H. Zare-Zardini, J. Funct. Foods (2013). https://doi.org/10.1016/j.jff.2012.08.004

    Article  Google Scholar 

  28. A. Connolly, C.O. Piggott, R.J. Fitzgerald, Food Res. Int. (2014). https://doi.org/10.1016/j.foodres.2013.12.021

    Article  Google Scholar 

  29. C. Uraipong, J. Zhao, J. Sci. Food Agric. (2016). https://doi.org/10.1002/jsfa.7182

    Article  Google Scholar 

  30. B. Zhu, H. He, T. Hou, Compr. Rev. Food Sci. (2019). https://doi.org/10.1111/1541-4337.12411

    Article  Google Scholar 

  31. K.Y. Chang, J.R. Yang, PLoS ONE (2013). https://doi.org/10.1371/journal.pone.0070166

    Article  Google Scholar 

  32. E. Gasteiger, C. Hoogland, A. Gattiker, S.E. Duvaud, M.R. Wilkins, R.D. Appel, A. Bairoch, in The Proteomics Protocols Handbook, ed. by J.M. Walker (Humana Press, Totowa, NJ, 2005), p. 571

  33. Z.C. Yang, L. Yang, Y.X. Zhang, H.F. Yu, W. An, Protein J. (2007). https://doi.org/10.1007/s10930-007-9072-5

    Article  Google Scholar 

  34. X.Q. Zheng, J.T. Wang, X.L. Liu, Y. Sun, Y.J. Zheng, X.J. Wang, Y. Liu, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2014.09.080

    Article  Google Scholar 

  35. V. Klompong, S. Benjakul, D. Kantachote, F. Shahidi, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2006.07.016

    Article  Google Scholar 

Download references

Funding

This work was supported by Universidad Politécnica del Mar y la Sierra Grant No. UPMYS/2021.

Author information

Authors and Affiliations

Authors

Contributions

JVFM: investigation, methodology, data curation, writing—original draft. AGSH: methodology, data curation. MFQS: conceptualization, supervision, investigation, methodology, data curation, writing—review & editing.

Corresponding author

Correspondence to María Fernanda Quintero-Soto.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Félix-Medina, J.V., Sepúlveda-Haro, A.G. & Quintero-Soto, M.F. Stability of antioxidant and hypoglycemic activities of peptide fractions of Maize (Zea mays L.) under different processes. Food Measure 17, 362–370 (2023). https://doi.org/10.1007/s11694-022-01618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01618-5

Keywords

Navigation