Log in

Evaluation of acrylamide and malondialdehyde levels in Tah-Dig of fried starchy foods: a case study in Iran

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Fried starchy foods have the conditions to produce harmful compounds, such as acrylamide and malondialdehyde (MDA). One of these popular and commonly consumed foods among Iranians is Tah-Dig. This study aimed to evaluate the factors that affect their production and also levels in Tah-Dig. In this cross-sectional study, the information about the cooking pattern and consumption of Tah-Dig was randomly obtained from 611 households in Kermanshah through a dietary pattern questionnaire. Samples were provided by the households were classified according to type (potato, rice and bread) and color (golden, light brown and dark brown). Acrylamide levels were measured by a LC–mass spectrometer, and MDA levels were measured using a barbituric acid kit. More than 77.7% of participants consumed Tah-Dig at least 5 times a week. Potato Tah-Dig had the highest amount of acrylamide (1096 ± 637 ng/g). By changing the color value from golden to dark brown, the amount of acrylamide in all types of Tah-Dig increased significantly (P-value < 0.001). The highest amount of MDA was ascribed to canola oil (1527.89 ± 519.20 ng/L) and the lowest to ghee (546.12 ± 213.43 ng/L), after the Tah-Dig was cooked. No correlation was found between the type of oil and the amount of acrylamide. Tah-Dig is considered a harmful food among Iranian households due to its high consumption frequency and the abundance of acrylamide and MDA. Food and nutrition policymakers should consider teaching the proper cooking ways of such foods to the people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. H. Lingnert, S. Grivas, M. Jägerstad, K. Skog, M. Törnqvist, P. Aman, Scand. J. Nutr. 46, 159–172 (2002)

    Article  Google Scholar 

  2. C. Pelucchi, C. Bosetti, C. Galeone, C.L. Vecchia, Int. J. Cancer 136, 2912–2922 (2015)

    Article  CAS  Google Scholar 

  3. M. Huang, J. Jiao, J. Wang, X. Chen, Y. Zhang, Environ. Pollut. 238, 852–858 (2018)

    Article  CAS  Google Scholar 

  4. Y. Zhang, M. Huang, P. Zhuang, J. Jiao, X. Chen, J. Wang, Y. Wu, Environ. Int. 117, 154–163 (2018)

    Article  CAS  Google Scholar 

  5. International Agency for Research on Cancer, Some industrial chemicals, in IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, vol 60 (IARC, 1994)

  6. C.A.G. Timmermann, S.S. Mølck, M. Kadawathagedara, A.A. Bjerregaard, M. Törnqvist, A.L. Brantsæter, M. Pedersen, Toxics 9, 155 (2021)

    Article  CAS  Google Scholar 

  7. B. Akbari-adergani, A. Ahmadi, G. Jahedkhanki, R.N. Nodehi, P. Sadighara, Curr. Nutr. Food Sci. 16, 776–780 (2020)

    Article  CAS  Google Scholar 

  8. B. Akbari-Adergani, K. Mahmood-Babooi, A. Salehi, G. Jahed Khaniki, N. Shariatifar, P. Sadighara, T. Zeinali, Environ. Monit. Assess. 193, 540 (2021)

    Article  CAS  Google Scholar 

  9. Z. Lepara, O. Lepara, A. Fajkić, D. Rebić, J. Alić, H. Spahović, Rom. J. Intern. Med. 58, 146–152 (2020)

    PubMed  Google Scholar 

  10. R.T. Wani, J. Fam. Med. Prim. Care 8, 1846–1849 (2019)

    Article  Google Scholar 

  11. M. Momayyezi, H. Fallahzadeh, J. Caring Sci. 9, 140–147 (2020)

    Article  Google Scholar 

  12. M.K. Charles-Ayinde, L.D. Stuchal, A.E. Mathews, A.S. Kane, J. Environ. Public Health 2020, 2704074 (2020)

    Article  Google Scholar 

  13. A. Tayyebi azar, M. Fallah-Karkan, M.A. Hosseini, B.K. Azad, A. Heidarzadeh, J. Hosseini, Urol. J. 17, 61–67 (2020)

    PubMed  Google Scholar 

  14. M. Perc, J. R. Soc. Interface 17, 20190686 (2020)

    Article  Google Scholar 

  15. P.E. Shahrbabki et al., Food Chem. Toxicol. 118, 361–370 (2018)

    Article  CAS  Google Scholar 

  16. A. Habib, M.M. Alam, I. Hussain, N. Nasir, M. Almuthebi, BioMed Res. Int. 2020, 7257052 (2020)

    Article  Google Scholar 

  17. C. Hartmann, M. Siegrist, K. van der Horst, Public. Health Nutr. 16, 1487–1496 (2013)

    Article  Google Scholar 

  18. M.T. Boroushaki, E. Nikkhah, A. Kazemi, M. Oskooei, M. Raters, Food Chem. Toxicol. 48, 2581–2584  (2010)

  19. EPoCitF Chain, EFSA J. 13, 4104 (2015)

  20. P.J. Lea, L. Sodek, M.A.J. Parry, P.R. Shewry, N.G. Halford, Ann. Appl. Biol. 150, 1–26 (2007)

    Article  CAS  Google Scholar 

  21. D.R. Lineback, J.R. Coughlin, R.H. Stadler, Annu. Rev. Food Sci. Technol. 3, 15–35 (2012)

    Article  CAS  Google Scholar 

  22. M. Negoita, E. Iorga, A. Adascalului, L. Catana, N. Belc, A. Stan, D. Efstatiade, H.Y. Aboul-Enein, J. Environ. Sci. Eng. A 5, 180–189 (2016)

    CAS  Google Scholar 

  23. F. Pedreschi, P. Moyano, K. Kaack, K. Granby, Food Res. Int. 38, 1–9 (2005)

    Article  CAS  Google Scholar 

  24. A. Serpen, V. Gökmen, J. Food Compos. Anal. 22, 589–595 (2009)

    Article  CAS  Google Scholar 

  25. D.N. Perera, G.G. Hewavitharana, S.B. Navaratne, BioMed Res. Int. 2021, 6258508 (2021)

    PubMed  PubMed Central  Google Scholar 

  26. H. Zhang, H. Zhang, L. Cheng, L. Wang, H. Qian, Food Addit. Contam. A 32, 1083–1088 (2015)

    Article  CAS  Google Scholar 

  27. R. Zamora, F.J. Hidalgo, J. Agric. Food Chem. 56, 6075–6080 (2008)

  28. I. Bikulčienė et al., Med. Sci. Monit. Basic Res. 27, e929634 (2021)

    Article  Google Scholar 

  29. A. Papastergiadis, et al., Food Chem. Toxicol. 73, 51–58 (2014)

  30. M. Guasch-Ferré et al., J. Am. Coll. Cardiol. 75, 1729–1739 (2020)

    Article  Google Scholar 

  31. E.M. Yubero-Serrano, J. Lopez-Moreno, F. Gomez-Delgado, J. Lopez-Miranda, Eur. J. Clin. Nutr. 72, 8–17 (2019)

    Article  Google Scholar 

  32. L. Ma, Q. He, Y. Qiu, H. Liu, J. Wu, G. Liu, C. Brennan, M.A. Brennan, L. Zhu, Food Chem. 347, 129080 (2021)

    Article  CAS  Google Scholar 

  33. M. Grootveld, B.C. Percival, J. Leenders, P.B. Wilson, Nutrients 12, 974 (2020)

    Article  CAS  Google Scholar 

  34. Z. Li et al., Am. J. Clin. Nutr. 91, 1180–1184 (2010)

    Article  CAS  Google Scholar 

  35. S. Moumtaz, B.C. Percival, D. Parmar, K.L. Grootveld, P. Jansson, M. Grootveld, Sci. Rep. 9, 1–21 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Kermanshah University of Medical Sciences for the financial support of this research. We also sincerely appreciate all those who participated in this study.

Funding

This work was supported by the Vice-Chancellor for Research of Kermanshah University of Medical Sciences under Grant Number 980216.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Mostafa Nachvak or Nazir Fattahi.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, S., Goudarzi, F., Soleimani, D. et al. Evaluation of acrylamide and malondialdehyde levels in Tah-Dig of fried starchy foods: a case study in Iran. Food Measure 16, 2434–2439 (2022). https://doi.org/10.1007/s11694-022-01343-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01343-z

Keywords

Navigation