Log in

Extraction of phenolic compounds from tomato pomace using choline chloride–based deep eutectic solvents

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The objective of this research was to investigate the efficacy of deep eutectic solvents (DESs)to extract polyphenolic compounds from tomato pomace with the assistance of ultrasound. The phytochemical constituents of tomato pomace extracts (TPE) were verified with a combination of high-performance liquid chromatography coupled with diode array detection and tandem mass spectrometry (HPLC-DAD-MS) and FTIR analysis. The extracted phenolic compounds from tomato pomace were quantified by Folin-Ciocalteu method. The predominant components in tomato pomace extracts were phenolic acids and flavanols. Chlorogenic acid was detected as the main phenolic compound in tomato extracts. The redox behavior of tomato pomace extracts was evaluated by means of cyclic voltammetry. Antioxidant activities of the obtained extracts were determined using the DPPH and ABTS scavenging assays. The reduction capacity of the extracts was assessed using ferric reducing power (FRAP) and phosphomolybdenum (PM) assays. extracts with DESs are characterized by the highest level of antioxidant activity. Theoretical study based on quantum chemistry/molecular modeling were performed to confirm the antioxidants capacity of compounds of tomato pomace extracts. Quantum chemical descriptors such as the frontier orbital energies (EHOMO and ELUMO), the energy gap between EHOMOand ELUMO (ΔE), hardness, and electrophilicity index have been calculated and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Availability of data and material.

Abbreviations

HPLC–DAD-MS:

Diode array detection and tandem mass spectrometry

DESs:

Deep eutectic solvents

TPE:

Tomato pomace extract

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

ABTS:

2,2′ -Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid

FTIR:

Fourier Transform Infrared Spectroscopy

FRAP:

Ferric reducing antioxidant power assay

PM:

Phosphomolybdenum assays

EHOMO :

Energy of the highest occupied molecular orbital

ELUMO :

Energy of the lowest unoccupied molecular orbital

References

  1. G. Laufenberg, B. Kunz, M. Nystroem, Biores Technol 87(2), 167–198 (2003). https://doi.org/10.1016/S0960-8524(02)00167-0

    Article  CAS  Google Scholar 

  2. J. Esteban, M. Ladero, Int J Food Sci Technol 53(5), 1095–1108 (2018). https://doi.org/10.1111/ijfs.13726

    Article  CAS  Google Scholar 

  3. H. Rohm et al., Foods 4(4), 690–697 (2015). https://doi.org/10.3390/foods4040690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. Vasyliev, V. Vorobyova, M. Skiba, L. Khrokalo, Adv Mater Sci Eng 2020, 1–11 (2020). https://doi.org/10.1155/2020/4505787

    Article  CAS  Google Scholar 

  5. G. Vasyliev, V. Vorobiova, Mater Today Proc 6(2), 178–186 (2019). https://doi.org/10.1016/j.matpr.2018.10.092

    Article  CAS  Google Scholar 

  6. V.I. Vorobyova, M.I. Skiba, A.S. Shakun, S.V. Nahirniak, Int J Corros Scale Inhib 8(2), 150–178 (2019). https://doi.org/10.17675/2305-6894-2019-8-2-1

    Article  CAS  Google Scholar 

  7. O.E. Chyhyrynets, Y.F. Fateev, V.I. Vorobiova, M.I. Skyba, Mater Sci 51(5), 644–651 (2016). https://doi.org/10.1007/s11003-016-9886-4

    Article  CAS  Google Scholar 

  8. V. Vorobyova, M. Skiba, J Bio Tribo Corros 7, 11 (2021). https://doi.org/10.1007/s40735-020-00450-y

    Article  Google Scholar 

  9. V. Vorobyova, G. Vasyliev, M. Skiba, ApplNanosci 12, 4523–4534 (2020). https://doi.org/10.1007/s13204-020-01369-z

    Article  CAS  Google Scholar 

  10. V. Vorobyova, O. Chygyrynets’, M. Skiba, I. Trus, S. Frolenkova, Chem Chem Technol 12(3), 410–418 (2018)

    Article  CAS  Google Scholar 

  11. G. Vasyliev, V. Vorobyova, T. Zhuk, J Chem 2020, 1–7 (2020). https://doi.org/10.1155/2020/5089758

    Article  CAS  Google Scholar 

  12. V. Vorobyova, M. Skiba, O. Chygyrynets’, Pigm Resin Technol 48(2), 137–147 (2019). https://doi.org/10.1108/PRT-03-2018-0025

    Article  CAS  Google Scholar 

  13. J.K. Bangia, M. Om, H. Singh, K. Behera, M. Gulia, J Mol Liquids 255, 758–766 (2017). https://doi.org/10.1016/j.molliq.2016.11.002

    Article  CAS  Google Scholar 

  14. H. Baltacıoğlua, C. Baltacıoğlua, I. Okur, A. Tanrıvermişa, M. Yalıça, Vib Spectrosc 415, 113308 (2021). https://doi.org/10.1016/j.vibspec.2020.103204

    Article  CAS  Google Scholar 

  15. M.M. Calvo, D. Dado, G. Santa-Maria, Eur Food Res Technol 224(5), 567–571 (2007). https://doi.org/10.1007/s00217-006-0335-8

    Article  CAS  Google Scholar 

  16. M. Skiba, V. Vorobyova, Mol Cryst Liq Cryst 674(1), 142–151 (2018). https://doi.org/10.1080/15421406.2019.1578520

    Article  CAS  Google Scholar 

  17. O.A. Pivovarov, M.I. Skiba, A.K. Makarova, V.I. Vorobyova, O.O. Pasenko, Vop. Khimii i Khimicheskoi Tekhnologii 6(115), 82–88 (2017)

    Google Scholar 

  18. R. Rai, S. Pandey, Langmuir 30(34), 10156–10160 (2014). https://doi.org/10.1021/la502174a

    Article  CAS  PubMed  Google Scholar 

  19. Y. Dai, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Anal Chem 85(13), 6272–6278 (2013)

    Article  CAS  Google Scholar 

  20. Y. Ma, P. Li, S.J. Willot, W. Zhang, D. Ribitsch, Y.H. Choi, Y. Wang, Chem Sus Chem 12, 1310–1315 (2019)

    Article  CAS  Google Scholar 

  21. Y. Dai, J. Spronsen, G.-J. Witkamp, R. Verpoorte, Y.H. Choi, Anal Chim Acta 766, 61–68 (2013). https://doi.org/10.1016/j.aca.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  22. M.K. Banjare, K. Behera, R.K. Banjare, R. Sahu, S. Sharma, S. Pandey, K.K. Ghosh, ACS Sustain Chem Eng 1678, 050004 (2019). https://doi.org/10.1021/acssuschemeng.8b06598

    Article  CAS  Google Scholar 

  23. M.K. Banjare, K. Behera, R. Kurrey, R.K. Banjare, M.L. Satnami, S. Pandey, K.K. Ghosh, Spectrochim Acta A Mol Biomol Spectrosc 199, 376–386 (2018). https://doi.org/10.1016/j.saa.2018.03.079

    Article  CAS  PubMed  Google Scholar 

  24. M. Pal, K. Behera, A. Yadav, S. Pandey, Chem Select 3(44), 12652–12660 (2018). https://doi.org/10.1002/slct.201802169

    Article  CAS  Google Scholar 

  25. H.S. Vasyl’Ev, Mater Sci 48(5), 694–696 (2013). https://doi.org/10.1007/s11003-013-9556-8

    Article  Google Scholar 

  26. Z. Lu, J. Wang, R. Gao, F. Ye, G. Zhao, Trends Food Sci Technol S0924–2244(18), 30448–30455 (2019). https://doi.org/10.1016/j.tifs.2019.02.020

    Article  CAS  Google Scholar 

  27. B.J. Allison, C.W. Simmons, Biomass Bioenerg 105, 331–341 (2017). https://doi.org/10.1016/j.biombioe.2017.07.019

    Article  CAS  Google Scholar 

  28. J. Pinela, M.A. Prieto, A.M. Carvalho, M.F. Barreiro, M.B.P.P. Oliveira, L. Barros, I.C.F.R. Ferreira, Sep Purif Technol S1383–5866(16), 30135–30136 (2016). https://doi.org/10.1016/j.seppur.2016.03.030

    Article  CAS  Google Scholar 

  29. M. Sarno, M. Iuliano, Appl Surf Sci 474(30), 135–146 (2019). https://doi.org/10.1016/j.apsusc.2018.04.060

    Article  CAS  Google Scholar 

  30. A.N. Grassino, J. Halambek, S. Djaković, S. RimacBrnčić, M. Dent, Z. Grabarić, Food Hydrocoll 52, 265–274 (2016). https://doi.org/10.1016/j.foodhyd.2015.06.020

    Article  CAS  Google Scholar 

  31. M.M. Calvo, D. Dado, G. Santa-Maria, Eur Food Res Technol 224(5), 567–571 (2007). https://doi.org/10.1007/s00217-006-0335-8

    Article  CAS  Google Scholar 

  32. J. Nagarajan, H.P. Kay, N.P. Krishnamurthy, N.R. Ramakrishnan, T.M.S. Aldawoud, C.M. Galanakis, O.C. Wei, Biomolecules 11(2), 182 (2020). https://doi.org/10.3390/biom11020182

    Article  CAS  Google Scholar 

  33. B. Šojić, B. Pavlić, V. Tomović, S. Kocić-Tanackov, S. Đurović, Z. Zeković, S. Škaljac, Food Chem 330, 127202 (2020). https://doi.org/10.1016/j.foodchem.2020.127202

    Article  CAS  PubMed  Google Scholar 

  34. A. Zuorro, Molecules 25(9), 2038 (2020). https://doi.org/10.3390/molecules25092038

    Article  CAS  PubMed Central  Google Scholar 

  35. A.S. Sengar, A. Rawson, M. Muthiah, S.K. Kalakandan, Ultrason Sonochem 61, 104812 (2019). https://doi.org/10.1016/j.ultsonch.2019.104812

    Article  CAS  PubMed  Google Scholar 

  36. Y. Bao, L. Reddivari, J.-Y. Huang, Innov Food Sci Emerg Technol 65, 102445 (2020). https://doi.org/10.1016/j.ifset.2020.102445

    Article  CAS  Google Scholar 

  37. A.N. Grassino, M. Brnčić, D. Vikić-Topić, S. Roca, M. Dent, S.R. Brnčić, Food Chem 198, 93–100 (2016). https://doi.org/10.1016/j.foodchem.2015.11.095

    Article  CAS  PubMed  Google Scholar 

  38. YPA Silva, TAPCG Ferreira Jiao, and MS Brooks, Journal of Food Science and Technology (2019).

  39. H.N. Rajha, T. Mhanna, S.E. Kantar, A.E. Khoury, N. Louka, G.R. Maroun, LWT 8(7), 227 (2019). https://doi.org/10.3390/antiox8070227

    Article  CAS  Google Scholar 

  40. A. García, E. Rodríguez-Juan, G. Rodríguez-Gutiérrez, J.J. Rios, J. Fernández-Bolaños, Food Chem 197, 554–561 (2016). https://doi.org/10.1016/j.foodchem.2015.10.131

    Article  CAS  PubMed  Google Scholar 

  41. G. Ming-Zhua, C. Qia, W. Li-Taob, M. Yaoa, Y. Liana, L. Yan-Yana, F. Yu-Jiea, Microchem J 154, 104598 (2020). https://doi.org/10.1016/j.microc.2020.104598

    Article  CAS  Google Scholar 

  42. B. Ozturk, C. Parkinson, M. Gonzalez-Miquel, Sep Purif Technol 206, 1–13 (2018). https://doi.org/10.1016/j.seppur.2018.05.052

    Article  CAS  Google Scholar 

  43. X. Wang, Y. Wu, J. Li et al., Ind Crops Prod 151, 112442 (2020). https://doi.org/10.1016/j.indcrop.2020.112442

    Article  CAS  Google Scholar 

  44. M.C. Bubalo, S. Vidović, I.R. Redovniković, S. Jokić, Food Bioprod Process 109, 52–73 (2018). https://doi.org/10.1016/j.fbp.2018.03.001

    Article  CAS  Google Scholar 

  45. J. Li, Z. Han, Y. Zou, B. Yu, RSC Adv 5, 93937–93944 (2015). https://doi.org/10.1039/C5RA15830C

    Article  CAS  Google Scholar 

  46. P. Prieto, M. Pineda, M. Aguilar, Anal Biochem 269(2), 337–341 (1999). https://doi.org/10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  47. L. Müller, K. Fröhlich, V. Böhm, Food Chem 129(1), 139–148 (2011). https://doi.org/10.1016/j.foodchem.2011.04.045

    Article  CAS  Google Scholar 

  48. K. Taipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, J Food Compos Anal 54(4), 462–467 (2006)

    Google Scholar 

  49. V. Macchioni, K. Carbone, A. Cataldo, R. Fraschini, S. Bellucci, Sep Purif. Technol 264(1), 118039 (2020). https://doi.org/10.1016/j.seppur.2020.118039

    Article  CAS  Google Scholar 

  50. A. Păucean, D.C. Vodnar, V. Mureșan, F. Fetea, F. Ranga, S.M. Man, C. Socaciu, Acta Aliment 46(4), 420–427 (2017)

    Article  Google Scholar 

  51. T. Lin, Y. Liu, C. Lai, T. Yang, J. **e, Y. Zhang, Ind Crops Prod 125, 150–159 (2018). https://doi.org/10.1016/j.indcrop.2018.08.078

    Article  CAS  Google Scholar 

  52. V. Vorobyova, A. Shakun, O. Chygyrynets’, M. Skiba, J. Zaporozhets, Chem Chem Technol 14(3), 372–379 (2020). https://doi.org/10.23939/chcht14.03.372

    Article  CAS  Google Scholar 

  53. R. Alcalde, A. Gutiérrez, M. Atilhan, S. Aparicio, J Mol Liq 290, 110916 (2019). https://doi.org/10.1016/j.molliq.2019.110916

    Article  CAS  Google Scholar 

  54. L. Percevault, E. Limanton, P. Nicolas, L.C. Paquin, ACS Sustain Chem Eng Lagrost 9(2), 776–784 (2021). https://doi.org/10.1021/acssuschemeng.0c07023

    Article  CAS  Google Scholar 

  55. K. Radošević, I. Čanak, M. Panić, K. Markov, M.C. Bubalo, J. Frece, I.R. Redovniković, Environ Sci Pollut Res 25(14), 14188–14196 (2018). https://doi.org/10.1007/s11356-018-1669-z

    Article  CAS  Google Scholar 

  56. G.S. Vasyliev, V.I. Vorobyova, O.V. Linyucheva, J Anal Methods Chem 2020, 8869436 (2020). https://doi.org/10.1155/2020/8869436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. G. Vasyliev, V. Vorobyova, Adv Mater Sci Eng 2020, 6615118 (2020). https://doi.org/10.1155/2020/6615118

    Article  CAS  Google Scholar 

  58. H.K. Sibhatu, S.A. Jabasingh, A. Yimam, S. Ahmed, LWT 135, 110009 (2020). https://doi.org/10.1016/j.lwt.2020.110009

    Article  CAS  Google Scholar 

  59. M. Filipović, Z. Marković, J. Đorović, J.D. Marković, B. Lučić, C R Chim 18(5), 492–498 (2015). https://doi.org/10.1016/j.crci.2014.09.001

    Article  CAS  Google Scholar 

  60. T. Chemie, R. Physics, Chem Phys (2014). https://doi.org/10.1039/C4FD00101J

    Article  Google Scholar 

  61. A. Shakun, V. Vorobyova, O. Chygyrynets, M. Skiba, J Chem (2020). https://doi.org/10.1155/2020/2913454

    Article  Google Scholar 

  62. V.K. Rajan, K. Muraleedharan, Food Chem 10, 2611 (2017). https://doi.org/10.1016/j.foodchem.2016.09.178

    Article  CAS  Google Scholar 

  63. A. Urbaniak, M. Molski, M. Szelag, Comput Method Sci Tech 18(2), 117–128 (2012). https://doi.org/10.12921/cmst.2012.18.02.117-128

    Article  Google Scholar 

  64. A.G. Papadopoulos, N. Nenadisand, M.P. Sigalas. Computational and Theoretical Chemistry (2016)

  65. A. Sarkar, T.R. Middya, A.D. Jana, J Mol Model 18(6), 26–21 (2011). https://doi.org/10.1007/s00894-011-1274-2

    Article  CAS  Google Scholar 

  66. J.C. Sánchez-Rangel, J. Benavides, J.B. Heredia, L. Cisneros-Zevallos, D.A. Jacobo-Velázquez, Anal Methods 5, 5990–5999 (2013). https://doi.org/10.1039/C3AY41125G

    Article  Google Scholar 

  67. A.K. Jangir, H. Mandviwala, P. Patel, S. Sharma, K. Kuperkar, J Mol Liq 317(1), 113923 (2020). https://doi.org/10.1016/j.molliq.2020.113923

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of Ukraine [Grant No. 2403, 2021].

Author information

Authors and Affiliations

Authors

Contributions

VV: conceptualization, methodology, investigation, writing-original draft, GV: cyclic voltammetry analysis writing-review and editing draft, MS: formal analysis.

Corresponding author

Correspondence to Viktoria Vorobyova.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financialinterestsor personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Ethical approval

Authors agree with ethical standards.

Consent to participate

Authors agree with to participate as author of the article.

Consent for publication

Authors agree publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyova, V., Skiba, M. & Vasyliev, G. Extraction of phenolic compounds from tomato pomace using choline chloride–based deep eutectic solvents. Food Measure 16, 1087–1104 (2022). https://doi.org/10.1007/s11694-021-01238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01238-5

Keywords

Navigation