Log in

Effect of oxidation modification induced by peroxyl radicals on the physicochemical and gel characteristics of grass carp myofibrillar protein

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Protein oxidation of fish products during storage and processing is of interest recently. In this study, the effect of peroxyl radicals generated from 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) on the physicochemical and gel properties of myofibrillar protein (MP) from grass carp was investigated. After incubation with AAPH (0.04, 0.2, 1, 5, 25 mM), the carbonyl and dityrosine content, and surface hydrophobicity index of MP were higher than that of the non-oxidation control. Conversely, this treatment decreased the free ammonia, total and free sulfhydryl content of MP progressively. The transformation from α-helix to β-sheet and β-turn in MP treated with AAPH was found. The fluorescence quenching of tryptophan occurred in the 5 and 25 mM AAPH groups. When the AAPH concentration reached to 25 mM, the protein solubility decreased to 58%, compared to the control group. Meanwhile, this AAPH treatment damaged the elastic feature of MP and also decreased the water holding capacity, gel strength and texture of gel, which were closely depended on the oxidation degree. The poor and rough microstructure provided solid and visible evidence for the loss of gel properties in oxidation treatment groups. In short, these results gave a deeper understanding for the changes of physicochemical and gel properties of fish MP subjected to oxidation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Sheeshka, E. Murkin, Comments Toxicol. 8(4–6), 375–397 (2002)

    Article  CAS  Google Scholar 

  2. Y.L. **ong, A.Q. Guo, Foods 10(1), 40 (2021)

    Article  CAS  Google Scholar 

  3. M. Hellwig, Angew. Chem. 58(47), 16742–16763 (2019)

    Article  CAS  Google Scholar 

  4. F. Alavi, Z. Emam-Djomeh, S. Momen, M. Mohammadian, M. Salami, A.A. Moosavi-Movahedi, Food Hydrocoll. 87, 734–746 (2019)

    Article  CAS  Google Scholar 

  5. L. Zhou, Y. Zhang, C. Zhao, H. Lin, Z. Wang, F. Wu, Int. J. Food Prop. 20, 1456–1467 (2017)

    CAS  Google Scholar 

  6. W. Wu, C. Zhang, Y. Hua, J. Sci. Food Agric. 89(8), 1416–1423 (2009)

    Article  CAS  Google Scholar 

  7. X. Li, C. Liu, J. Wang, K. Zhou, S. Yi, W. Zhu, Y. Xu, H. Lin, J. Li, J. Food Biochem. 44(1), e13084 (2020)

    Article  PubMed  Google Scholar 

  8. A. Soyer, B. Özalp, Ü. Dalmış, V. Bilgin, Food Chem. 120(4), 1025–1030 (2010)

    Article  CAS  Google Scholar 

  9. F. Soglia, G. Baldi, M. Petracci, J. Food Sci. 85(10), 3229–3236 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. D. Zhang, H. Li, A.M. Emara, Y. Hu, Z. Wang, M. Wang, Z. He, Food Chem. 315, 126226 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. C. Liu, W. Li, B. Lin, S. Yi, B. Ye, H. Mi, J. Li, J. Wang, X. Li, LWT Food Sci. Technol. 150, 111919 (2021)

    Article  CAS  Google Scholar 

  12. M. Estévez, C. Luna, Crit. Rev. Food Sci. 57(17), 3781–3793 (2017)

    Article  CAS  Google Scholar 

  13. M. Estévez, Y.L. **ong, J. Food Sci. 84(3), 387–396 (2019)

    Article  PubMed  CAS  Google Scholar 

  14. S. Liu, P. Zhao, J. Zhang, Q. Xu, Y. Ding, J. Liu, Food Hydrocoll. 67, 216–223 (2017)

    Article  CAS  Google Scholar 

  15. F. Geng, Y. Huang, Q. Huang, D. He, S. Li, M. Ma, J. Food Process. Preserv. 42(6), e13626 (2018)

    Article  CAS  Google Scholar 

  16. B.M. Nyaisaba, X. Liu, S. Zhu, X. Fan, L. Sun, S. Hatab, W. Miao, M. Chen, S. Deng, LWT Food Sci. Technol. 106, 15–21 (2019)

    Article  CAS  Google Scholar 

  17. M. Utrera, V. Parra, M. Estévez, Meat Sci. 96(2), 812–820 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. X. Cui, Y.L. **ong, B. Kong, X. Zhao, N. Liu, Food Bioprocess Technol. 5(6), 2454–2461 (2012)

    Article  CAS  Google Scholar 

  19. J.B. German, S.E. Chen, J.E. Kinsella, J. Agric. Food Chem. 33(4), 680–683 (1985)

    Article  CAS  Google Scholar 

  20. E. Niki, A. Kawakami, M. Saito, Y. Yamamoto, J. Tsuchiya, Y. Kamiya, J. Biol. Chem. 260(4), 2191–2196 (1985)

    Article  CAS  PubMed  Google Scholar 

  21. K. Hiramoto, H. Johkoh, K.I. Sako, K. Kikugawa, Free Radic. Res. Commun. 19(5), 323–332 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. X. Li, C. Liu, J. Wang, W. Li, B. Lin, W. Zhu, Y. Xu, S. Yi, H. Mi, J. Li, J. Food Biophys. 15(4), 397–408 (2020)

    Article  Google Scholar 

  23. R.L. Levine, B.S. Berlett, J. Moskovitz, L. Mosoni, E.R. Stadtman, Mech. Ageing Dev. 107(3), 323–332 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. J. Adler-Nissen, J. Agric. Food Chem. 27(6), 1256–1262 (1979)

    Article  CAS  PubMed  Google Scholar 

  25. G.L. Ellman, Arch. Biochem. Biophys. 82(1), 70–77 (1959)

    Article  CAS  PubMed  Google Scholar 

  26. W. Gao, Y. Huang, X.A. Zeng, M.A. Brennan, Int. J. Biol. Macromol. 135, 839–844 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. J. Yongsawatdigul, J.W. Park, J. Food Sci. 64(4), 679–683 (1999)

    Article  CAS  Google Scholar 

  28. S. Benjakul, W. Visessanguan, C. Thongkaew, M. Tanaka, Food Hydrocoll. 19(2), 197–207 (2005)

    Article  CAS  Google Scholar 

  29. E.R. Stadtman, R.L. Levine, Amino Acids 25(3), 207–218 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. Z. Bao, J. Wu, Y. Cheng, Y. Chi, Process Biochem. 57, 124–130 (2017)

    Article  CAS  Google Scholar 

  31. E. Shacter, Drug Metab. Rev. 32, 307–326 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. S. Qian, P. Dou, J. Wang, L. Chen, X. Xu, G. Zhou, B. Zhu, N. Ullah, X. Feng, Food Chem. 349, 129066 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. Y. Cao, Y.L. **ong, Food Chem. 180, 235–243 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. R.T. Dean, S. Fu, R. Stocker, M.J. Davies, Biochem. J. 324(1), 1–18 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Morzel, P. Gatellier, T. Sayd, M. Renerre, E. Laville, Meat Sci. 73(3), 536–543 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. X. Duan, M. Li, J. Shao, H. Chen, X. Xu, Z. **, X. Liu, Food Hydrocoll. 75, 223–228 (2018)

    Article  CAS  Google Scholar 

  37. X. Deng, Y. Lei, J. Liu, J. Zhang, J. Qin, J. Food Biochem. 43(2), e12710 (2019)

    Article  PubMed  CAS  Google Scholar 

  38. J. Bandekar, Biochim. Biophys. Acta 1120(2), 123–143 (1992)

    Article  CAS  PubMed  Google Scholar 

  39. W. Zhu, H. Huan, Y. Bu, X. Li, D. Shiuan, J. Li, X. Sun, Int. J. Food Sci. Technol. 54(6), 2159–2168 (2019)

    Article  CAS  Google Scholar 

  40. B. Hazt, H.P. Bassani, J.P. Elias-Machado, J.L.A. Buzzo, J.L.M. Silveira, R.A. de Freitas, Food Hydrocoll. 104, 105769 (2020)

    Article  CAS  Google Scholar 

  41. V. Sante-Lhoutellier, L. Aubry, P. Gatellier, J. Agric. Food Chem. 55(13), 5343–5348 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. C. Li, Y.L. **ong, J. Chen, J. Agric. Food Chem. 60(32), 8020–8027 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. D. Cando, B. Herranz, A.J. Borderías, H.M. Moreno, Food Hydrocoll. 51, 176–187 (2015)

    Article  CAS  Google Scholar 

  44. B.O. Hemung, J. Yongsawatdigul, J. Food Sci. 70(8), 7 (2005)

    Article  Google Scholar 

  45. S. Ikeda, E.A. Foegeding, T. Hagiwara, Langmuir 15(25), 8584–8589 (2000)

    Article  CAS  Google Scholar 

  46. F. Lefèvre, B. Fauconneau, A. Ouali, J. Culioli, J. Food Sci. 63(2), 299–304 (2008)

    Article  Google Scholar 

  47. N. Buamard, S. Benjakul, Food Hydrocoll. 51, 146–155 (2015)

    Article  CAS  Google Scholar 

  48. T.C. Lanier, J. Yongsawatdigul, P. Carvajal-Rondanelli, Surimi Gelation Chemistry (CRC Press, New York, 2013), pp. 101–138

    Google Scholar 

  49. D.Y. Li, Z.F. Tan, Z.Q. Liu, C. Wu, H.L. Liu, C. Guo, D.Y. Zhou, Food Chem. 351, 129344 (2021)

    Article  CAS  PubMed  Google Scholar 

  50. X. Zhuang, X. Jiang, M. Han, Z. Kang, L. Zhao, X. Xu, G. Zhou, Food Hydrocoll. 57, 253–261 (2016)

    Article  CAS  Google Scholar 

  51. L. Wang, M. Zhang, B. Bhandari, Z. Gao, Food Res. Int. 86, 131–139 (2016)

    Article  CAS  Google Scholar 

  52. L. Zhang, P. Gui, Y. Zhang, J. Lin, Q. Li, H. Hong, Y. Luo, LWT Food Sci. Technol. 102, 142–149 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the financial support provided by the National Natural Science Foundation of China (No.31771999) and the Liaoning Revitalization Talents Program (XLYC1807133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **xiang Wang or Xuepeng Li.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, W., Zhou, M. et al. Effect of oxidation modification induced by peroxyl radicals on the physicochemical and gel characteristics of grass carp myofibrillar protein. Food Measure 15, 5572–5583 (2021). https://doi.org/10.1007/s11694-021-01123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01123-1

Keywords

Navigation