Log in

Reduction of acrylamide formation in bread and fried potato products using probiotic microorganisms: a systematic review and dose–response meta-analysis

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Acrylamide is a carcinogen found in heat-treated food products that cause neurotoxicity and major genetic damage. The present systematic review and meta-analysis aimed to elucidate probiotic microorganisms' efficiency for reducing acrylamide in high-risk foods, including bread and fried potato products. A systematic search was performed in Scopus, Google Scholar, Web of Science, and PubMed, from inception until January 2021. The experimental studies the reduction of acrylamide formation in bread and fried potato products using probiotic microorganisms included in this review. The extracted information was analyzed in two subgroups from fifteen studies with 41 strains of bacteria and yeast. The results indicated that probiotic microorganism strains significantly diminished acrylamide by 38.33% (CI 32.95%, 43.71%) in bread and 63.87% (CI 53.16%, 74.58%) in fried potato. Most studies were assessed using different probiotics strains, especially lactic acid bacteria (63.41%) in sourdough for bread making. Considering strain-specific potential of probiotics in binding with acrylamide the rank order of strain was Saccharomyces (82%), > Lactobacillus (39.28%), > Leuconostoc (34.35%), > Pediococcus (25.90%) in bread and Aureobasidium (83%), > Lactobacillus (63.8%), > Saccharomyces (60.87%) in fried potato products. These findings suggest that sourdough fermentation with selected potential strains of probiotics can be used safely for reducing acrylamide in cereal bread. Also, the treatment of potatoes with appropriate strains before frying can be recommended for decreasing acrylamide levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Koszucka et al., Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit. Rev. Food. Sci. Nutr. 60(10), 1677–1692 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. F. Pedreschi et al., Color changes and acrylamide formation in fried potato slices. Food Res. Int. 38(1), 1–9 (2005)

    Article  CAS  Google Scholar 

  3. V. Gökmen, T.K. Palazoğlu, Acrylamide formation in foods during thermal processing with a focus on frying. Food Bioprocess Technol. 1(1), 35–42 (2008)

    Article  Google Scholar 

  4. V. Matoso et al., Acrylamide: a review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem. 283, 422–430 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Q. Hu et al., Detection of acrylamide in potato chips using a fluorescent sensing method based on acrylamide polymerization-induced distance increase between quantum dots. Biosens. Bioelectron. 54, 64–71 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. J. Ahn et al., Verification of the findings of acrylamide in heated foods. Food Addit. Contam. 19(12), 1116–1124 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. G. Mousavinejad, K. Rezaei, F. Khodaiyan, Reducing acrylamide in fried potato pancake using baker’s yeast, lactobacilli and microalgae. Quality Assur. Saf. Crops Foods 7(5), 779–787 (2015)

    Article  CAS  Google Scholar 

  8. E. Bartkiene et al., Study on the reduction of acrylamide in mixed rye bread by fermentation with bacteriocin-like inhibitory substances producing lactic acid bacteria in combination with Aspergillus niger glucoamylase. Food Control 30(1), 35–40 (2013)

    Article  CAS  Google Scholar 

  9. A. Koszucka et al., Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit. Rev. Food Sci. Nutr. 60(10), 1677–1692 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. M.A. Schouten, S. Tappi, S. Romani, Acrylamide in coffee: formation and possible mitigation strategies–a review. Crit. Rev. Food Sci. Nutr. 60(22), 3807–3821 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. N. Khorshidian et al., Potential anticarcinogenic effects of lactic acid bacteria and probiotics in detoxification of process-induced food toxicants. Iran. J. Cancer Prev. 9, e7920 (2016)

    Google Scholar 

  12. Y. Shen et al., In vitro adsorption mechanism of acrylamide by lactic acid bacteria. LWT 100, 119–125 (2019)

    Article  CAS  Google Scholar 

  13. A. Hernandez-Mendoza, H. Garcia, J. Steele, Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem. Toxicol. 47(6), 1064–1068 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. J. Serrano-Niño et al., In vitro reduced availability of aflatoxin B1 and acrylamide by bonding interactions with teichoic acids from lactobacillus strains. LWT-Food Sci. Technol. 64(2), 1334–1341 (2015)

    Article  CAS  Google Scholar 

  15. Y. Shen et al., In vitro adsorption mechanism of acrylamide by lactic acid bacteria. LWT-Food Sci. Technol. 100, 119–125 (2019)

    Article  CAS  Google Scholar 

  16. E. Bartkiene et al., Parameters of rye, wheat, barley, and oat sourdoughs fermented with Lactobacillus plantarum LUHS135 that influence the quality of mixed rye-wheat bread, including acrylamide formation. Int. J. Food Sci. Technol. 52(6), 1473–1482 (2017)

    Article  CAS  Google Scholar 

  17. D. Zhang et al., Key role of peptidoglycan on acrylamide binding by lactic acid bacteria. Food Sci. biotechnol. 26(1), 271–277 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E. Bartkiene et al., The contribution of P. acidilactici, L. plantarum, and L. curvatus starters and L-(+)-lactic acid to the acrylamide content and quality parameters of mixed rye - Wheat bread. LWT 80, 43–50 (2017)

    Article  CAS  Google Scholar 

  19. P. Baardseth et al., Lactic acid fermentation reduces acrylamide formation and other Maillard reactions in French fries. J. Food Sci. 71(1), C28–C33 (2006)

    Article  CAS  Google Scholar 

  20. B.N. Esfahani et al., Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Addit. Contam. A 34(11), 1904–1914 (2017)

    Article  CAS  Google Scholar 

  21. A. Di Francesco et al., Reduction of acrylamide formation in fried potato chips by Aureobasidum pullulans L1 strain. Int. J. Food Microbiol. 289, 168–173 (2019)

    Article  PubMed  CAS  Google Scholar 

  22. H. Blom et al., Lactic acid fermentation reduces acrylamide formed during production of fried potato products. Aspects Appl. Biol. 97, 65–71 (2009)

    Google Scholar 

  23. A. Duda-Chodak et al., A review of the interactions between acrylamide, microorganisms and food components. Food Funct. 7(3), 1282–1295 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. A. Agresti, An Introduction to Categorical Data Analysis (John Wiley & Sons, Hoboken, 2018)

    Google Scholar 

  25. A. Emadi et al., Aflatoxin reduction in nuts by roasting, irradiation and fumigation: a systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2021, 1–11 (2021)

    CAS  Google Scholar 

  26. R. DerSimonian, N. Laird, Meta-analysis in clinical trials. Controll. Clin. Trials 7(3), 177–188 (1986)

    Article  CAS  Google Scholar 

  27. J. Chandler et al., Cochrane Handbook for Systematic Reviews of Interventions (Wiley, Hoboken, 2019)

    Google Scholar 

  28. J. Higgins, Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration (2011). www.cochrane-handbook.org

  29. M. Matouri, I. Alemzadeh, Suppressed acrylamide formation during baking in yeast-leavened bread based on added asparaginase, baking time and temperature using response surface methodology. Appl. Food Biotechnol. 5(1), 29–36 (2018)

    CAS  Google Scholar 

  30. W. Al-Moqbali et al., Biodegradation of partially hydrolyzed polyacrylamide hpam using bacteria isolated from omani oil fields (2018)

  31. J.C. Serrano-Nino et al., In vitro reduced availability of aflatoxin B-1 and acrylamide by bonding interactions with teichoic acids from lactobacillus strains. LWT-Food Sci. Technol. 64(2), 1334–1341 (2015)

    Article  CAS  Google Scholar 

  32. J.C. Serrano-Niño et al., In vitro study of the potential protective role of Lactobacillus strains by Acrylamide Binding. J. Food Saf. 34(1), 62–68 (2014)

    Article  CAS  Google Scholar 

  33. K.B. Heller, Apparent molecular weights of a heat-modifiable protein from the outer membrane of Escherichia coli in gels with different acrylamide concentrations. J. Bacteriol. 134(3), 1181–1183 (1978)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y.G. Maksimova et al., Temperature dependence of the processes of acrylamide biodegradation in river silt suspensions at their inoculation by selected bacterial strains. Water Resour. 47(1), 130–136 (2020)

    Article  CAS  Google Scholar 

  35. K. Petka, T. Tarko, A. Duda-Chodak, Is acrylamide as harmful as we think? A new look at the impact of acrylamide on the viability of beneficial intestinal bacteria of the genus Lactobacillus. Nutrients 12(4), 22 (2020)

    Article  CAS  Google Scholar 

  36. L. Rivas-Jimenez et al., Evaluation of acrylamide-removing properties of two Lactobacillus strains under simulated gastrointestinal conditions using a dynamic system. Microbiol. Res. 190, 19–26 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. M. Fink et al., Effect of added asparagine and glycine on acrylamide content in yeast-leavened bread. Cereal Chem. 83(2), 218–222 (2006)

    Article  CAS  Google Scholar 

  38. T. Katsaiti, K. Granby, Mitigation of the processing contaminant acrylamide in bread by reducing asparagine in the bread dough. Food Addit. Contam. A 33(9), 1402–1410 (2016)

    Article  CAS  Google Scholar 

  39. S. Wang et al., Effects of starch damage and yeast fermentation on acrylamide formation in bread. Food Control 73, 230–236 (2017)

    Article  CAS  Google Scholar 

  40. E. Bartkiene et al., A concept of mould spoilage prevention and acrylamide reduction in wheat bread: application of lactobacilli in combination with a cranberry coating. Food Control 91, 284–293 (2018)

    Article  CAS  Google Scholar 

  41. F. Dastmalchi et al., The impact of Lactobacillus plantarum, Paracasei, Casei-Casei, and Sanfranciscensis on reducing acrylamide in wheat bread. J. Agric. Sci. Technol. 18, 1793–1805 (2016)

    Google Scholar 

  42. F. Dastmalchi, S.H. Razavi, Comparison of the impact of Lactobacillus casei and Lactobacillus rhamnosus on acrylamide reduction in flat and bulk bread. Quality Assur. Saf. Crops Foods 8(4), 483–491 (2016)

    Article  CAS  Google Scholar 

  43. H. Fredriksson et al., Fermentation reduces free asparagine in dough and acrylamide content in bread. Cereal Chem. 81(5), 650–653 (2004)

    Article  CAS  Google Scholar 

  44. E. Bartkiene et al., The influence of scalded flour, fermentation, and plants belonging to lamiaceae family on the wheat bread quality and acrylamide content. J. Food Sci. 83(6), 1560–1568 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. A. Kamkar et al., The inhibitory role of autolysed yeast of Saccharomyces cerevisiae, vitamins B3 and B6 on acrylamide formation in potato chips. Toxin Rev. 34(1), 1–5 (2015)

    Article  CAS  Google Scholar 

  46. W. Zhou et al., The effect of biological (yeast) treatment conditions on acrylamide formation in deep-fried potatoes. Food Sci. Biotechnol. 24(2), 561–566 (2015)

    Article  CAS  Google Scholar 

  47. B. Nasiri Esfahani et al., Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Addit. Contam. A 34(11), 1904–1914 (2017)

    Article  CAS  Google Scholar 

  48. E. Bartkiene et al., Effect of lactic acid fermentation of lupine wholemeal on acrylamide content and quality characteristics of wheat-lupine bread. Int. J. Food Sci. Nutr. 64(7), 890–896 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. A. Kamkar et al., The inhibitory role of autolysed yeast of Saccharomyces cerevisiae, vitamins B-3 and B-6 on acrylamide formation in potato chips. Toxin Rev. 34(1), 1–5 (2015)

    Article  CAS  Google Scholar 

  50. R. Zamora, R.M. Delgado, F.J. Hidalgo, Model reactions of acrylamide with selected amino compounds. J. Agric. Food Chem. 58(3), 1708–1713 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. E.J.M. Konings et al., Acrylamide in cereal and cereal products: a review on progress in level reduction. Food Addit. Contam. 24(Suppl. 1), 47–59 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. I. Nachi et al., Assessment of lactic acid bacteria application for the reduction of acrylamide formation in bread. LWT 92, 435–441 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Abdolshahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emadi, A., Yousefi, B., Eslami, M. et al. Reduction of acrylamide formation in bread and fried potato products using probiotic microorganisms: a systematic review and dose–response meta-analysis. Food Measure 15, 4277–4287 (2021). https://doi.org/10.1007/s11694-021-00997-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00997-5

Keywords

Navigation