Log in

Thermal properties of whole and tissue parts of pomegranate (Punica granatum) fruit

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The thermal properties of two pomegranate fruit cultivars (Wonderful and Acco) and their epicarp, mesocarp and arils were experimentally determined. A transient heating probe system was first calibrated and used for accurate measurement of the specific heat capacity, thermal conductivity, and thermal diffusivity over a temperature range of 7–45 °C. The thermophysical properties did not vary significantly between the two cultivars. The density of the whole ‘Wonderful’ and ‘Acco’ fruit was 986.99 ± 23.82 and 1041.23 ± 18.93 kg m−3, respectively. The epicarp of both cultivars had significantly lower density compared to the mesocarp and arils. The values of thermal conductivity and diffusivity of the two pomegranate cultivars increased significantly with increase in tissue temperature. In both cultivars, the aril part was observed to have the highest values of thermal conductivity and specific heat capacity. For ‘Acco’ at 7 °C, values were 0.419 ± 0.047 W m−1 K−1 and 2775.244 ± 298.120 J kg−1 K−1, respectively, compared to the mesocarp (0.352 ± 0.040 W m−1 K−1 and 2560.803 ± 231.028 J kg−1 K−1) and epicarp (0.389 ± 0.030 W m−1 K−1 and 2681.888 ± 135.460 J kg−1 K−1). For both ‘Wonderful’ and ‘Acco’, the in-plane thermal property values (measured along layers of peel slices) were the same as the cross-plane property values (measured through layers of slices).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.H. Rahmani, M.A. Alsahli, S.A. Almatroodi, Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharmacognosy J. 9, 689–695 (2017)

    Article  CAS  Google Scholar 

  2. M. Erkan, A. Dogan, (2018). Pomegranate/Roma—Punica granatum. In Exotic Fruits (pp. 355–361)

  3. CBI Centre for the Promotion of Imports from develo** countries, (2010). Exporting fresh pomegranates to Europe. Accessed 21 Nov 2018. https://www.cbi.eu/market-information/fresh-fruit-vegetables/pomegranates/europe/

  4. POMASA, (2018). Pomegranate Association of South Africa. Accessed 21 Nov 2018. https://www.sapomegranate.co.za/focus-areas/statistics-and-information 16/11/18

  5. U.L. Opara, M.R. Al-Ani, Y.S. Al-Shuaibi, Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food Bioprocess Technol. 2, 315–321 (2009)

    Article  CAS  Google Scholar 

  6. O.A. Fawole, U.L. Opara, Effects of storage temperature and duration on physiological responses of pomegranate fruit. Ind. Crops Prod. 47, 300–309 (2013)

    Article  CAS  Google Scholar 

  7. E. Arendse, O.A. Fawole, U.L. Opara, Influence of storage temperature and duration on postharvest physico-chemical and mechanical properties of pomegranate fruit arils. CyTA-J. Food 12, 389–398 (2014)

    Article  CAS  Google Scholar 

  8. A. Ambaw, M. Mukama, U.L. Opara, Analysis of the effects of package design on the rate and uniformity of cooling of stacked pomegranates: numerical and experimental studies. Comput. Electron. Agric. 136, 3–24 (2017)

    Article  Google Scholar 

  9. M. Mukama, A. Ambaw, T.M. Berry, U.L. Opara, Analysing the dynamics of quality loss during precooling and ambient storage of pomegranate fruit. J. Food Eng. 245, 166–173 (2019)

    Article  Google Scholar 

  10. S.M. Elyatem, A.A. Kader, Postharvest physiology and storage behaviour of pomegranate fruits. Sci. Hortic. 24, 287–298 (1984)

    Article  Google Scholar 

  11. R. Ben-Arie, E. Or, The development and control of husk scald on ‘Wonderful’ pomegranate fruit during storage. J. Am. Soc. Hortic. Sci. 3, 395–399 (1986)

    Google Scholar 

  12. A.I. Koksal, Research on the storage of pomegranate (cv. Gok Bahce) under different conditions. Acta Hortic. 258, 295–302 (1989)

    Article  Google Scholar 

  13. A.A. Kader, Postharvest biology and technology of pomegranates, in Pomegranates: Ancient roots to modern medicine, ed. by N.P. Seeram, R.N. Schulman, D. Heber (CRC Press, Boca Raton, 2006), pp. 211–220

    Google Scholar 

  14. M. Mukama, A. Ambaw, T.M. Berry, U.L. Opara, Energy usage of forced air precooling of pomegranate fruit inside ventilated cartons. J. Food Eng. 215, 126–133 (2017)

    Article  Google Scholar 

  15. R.P. Singh, Heating and cooling processes for foods, in Handbook of Food Engineering, 2nd edn., ed. by D.R. Heldman, D.B. Lund (CRC Press, Boca Raton, 2006), pp. 397–426

    Google Scholar 

  16. J.K. Carson, J. Wang, M.F. North, D.J. Cleland, Effective thermal conductivity prediction of foods using composition and temperature data. J. Food Eng. 175, 65–73 (2016)

    Article  Google Scholar 

  17. N.N. Mohsenin, Thermal properties of food and agricultural materials (Gordon and Breach, New York, 1980), pp. 2–246

    Google Scholar 

  18. V.E. Sweat, Thermal properties of foods, in Engineering Properties of Foods, 2nd edn., ed. by M.A. Rao, S.S. Rizvi (CRC Press, Boca Raton, 1994), pp. 99–138

    Google Scholar 

  19. O.J. Ikegwu, F.C. Ekwu, Thermal and physical properties of some tropical fruits and their juices in Nigeria. J. Food Technol. 7, 38–42 (2009)

    Google Scholar 

  20. R. Espinoza-Guevara, J. Caro-Corrales, C. Ordorica- Falomir, J. Zazueta-Morales, M. Veja-Garcia, K. Cronin, Thermophysical properties of pulp and rind of papaya cv. Maradol. Int. J. Food Properties 13, 65–74 (2009)

    Article  Google Scholar 

  21. F.J. Cuesta, M.D. Alvarez, Mathematical modelling for heat conduction in stone fruits. Int. J. Refrig 80, 120–129 (2017)

    Article  Google Scholar 

  22. H. Lisowa, M. Wujec, T. Lis, Influence of temperature and variety on the thermal properties of apples. Int. Agrophys. 16, 43–52 (2002)

    Google Scholar 

  23. V.E. Sweat, Experimental values of thermal conductivity of selected fruits and vegetables. J. Food Sci. 39, 1080–1091 (1974)

    Article  Google Scholar 

  24. A.K. Aremu, O.K. Fadele, Moisture dependent thermal properties of doum palm fruit (Hyphaene Thebaica). J. Emerg. Trends Eng. Appl. Sci. 1, 199–204 (2010)

    Google Scholar 

  25. S.K. Modi, B.D. Prasad, M. Basavaraj, The influence of moisture content and density on thermal conductivity of Ficus Carica Linnaus (Fig Fruit) by transient line heat source method. Int. J. Eng. Innov. Technol., 177–180 (2013)

  26. A. Farinu, O. Baiik, Thermal properties of sweet potato with its moisture content and temperature. Int. J. Food Prop. 10, 703–719 (2007)

    Article  Google Scholar 

  27. I. Mamani, Modelling of thermal properties of Persian walnut kernel as a function of moisture content and temperature using response surface methodology. J. Food Process. Preserv. 39, 2762–2772 (2015)

    Article  CAS  Google Scholar 

  28. J.E. Lozano, M.J. Urbicain, R. Rotstein, Thermal conductivity of apples as a function of moisture content. J. Food Sci. 44, 724–728 (1979)

    Article  Google Scholar 

  29. R.F. Zabalaga, I.A.F. Carla, C.T. Carmen, Experimental determination of thermophysical properties of unripe banana slices (Musa cavendishii) during convective drying. J. Food Eng. 187, 62–69 (2016)

    Article  Google Scholar 

  30. M. Mukama, A. Ambaw, U.L. Opara, Analysis of the thermal and bio-physical properties of pomegranate fruit. Acta Hortic. 1201, 273–280 (2018)

    Article  Google Scholar 

  31. O.K. Owolarafe, M.T. Olabige, M.O. Faborode, Physical and mechanical properties of two varieties of fresh oil palm fruit. J. Food Eng. 78, 1228–1232 (2007)

    Article  Google Scholar 

  32. M. Umeta, C.E. West, H. Fufa, Content of zinc, iron, calcium and their absorption inhibitors in foods commonly consumed in Ethiopia. J. Food Compos. Anal. 18, 803–817 (2005)

    Article  CAS  Google Scholar 

  33. F.A. Al-Said, U.L. Opara, R.A. Al-Yahyai, Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. J. Food Eng. 90, 129–134 (2009)

    Article  Google Scholar 

  34. Z. Li, N. Kobayashi, Determination of moisture diffusivity by thermo-gravimetric analysis under non-isothermal condition. Dry. Technol. 23, 1331–1342 (2005)

    Article  CAS  Google Scholar 

  35. Decagon Devices, Inc. KD2 Pro Thermal Properties Analyser Operator’s Manual. 2365 NE Hopkins Court Pullman WA 99163. http://www.decagon.com

  36. A. Rozanski, D. Stefaniuk, On the prediction of the thermal conductivity of saturated clayey soils: effect of the specific surface area. Acta Geodyn. Geomater. 13, 184 (2016)

    Google Scholar 

  37. A. Różański, M. Sobótka, On the interpretation of the needle probe test results: thermal conductivity measurement of clayey soils. Studia Geotechnica Mechanica 35, 195–207 (2013)

    Article  Google Scholar 

  38. M. Schwarz, K.P. Weiss, R. Heller, W.H. Fietz, Thermal conductivity measurement of HTS tapes and stacks for current lead applications. Fusion Eng. Des. 84, 1748–1750 (2009)

    Article  CAS  Google Scholar 

  39. R.L. Costa, V. Vlassov, Evaluation of inherent uncertainties of the homogeneous effective thermal conductivity approach in modelling of printed circuit boards for space applications. J. Electron. Cooling Thermal Control 3, 35–41 (2013)

    Article  Google Scholar 

  40. D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Packag. 138(040802-1-), 040802–040819 (2016)

    Article  CAS  Google Scholar 

  41. A. Tehranifar, M. Zarei, Z. Nemati, B. Esfandiyari, M.R. Vazifeshenas, Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Sci. Hortic. 126, 180–185 (2010)

    Article  CAS  Google Scholar 

  42. X.G. Liang, Y. Zhang, X. Gek, The measurement of thermal conductivities of solid fruits and vegetables. Meas. Sci. Technol. 10, N82–N86 (1999)

    Article  CAS  Google Scholar 

  43. S.M.T. Gharibzahedi, M. Ghahderijani, Z.S. Lajevardi, Specific heat, thermal conductivity and thermal diffusivity of red lentil seed as a function of moisture content. J. Food Process. Preserv. 38, 1807–1811 (2014)

    Article  Google Scholar 

  44. Y. Choi, M.R. Okos, Thermal properties of liquid foods—review, in 1983 meeting of the American Society of Agricultural Engineers, Chicago, iii. Paper No. 83-6516, (1983)

  45. USDA Nutrient Database for Standard Reference. U.S. Department of Agriculture, Washington, D.C., (1996)

  46. M.A. Rao, S.S. Rizvi, A.K. Datta, J. Ahmed, Engineering properties of foods, 4th edn. (CRC Press, Boca Raton, 2014), pp. 223–247

    Book  Google Scholar 

  47. C. Ratti, A.S. Mujumdar, Fixed—bed batch drying of shrinking particles with time varying drying air conditions. Dry. Technol. 11, 1311–1335 (1993)

    Article  CAS  Google Scholar 

  48. H.S. Ramaswamy, M.A. Tung, Thermophysical properties of apples in relation to freezing. J. Food Sci. 46, 724–728 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

This work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation. The project was supported through contract research with Agri-Edge Ltd funded by the Department of Trade and Industry (dti) through the Technology and Human Resources for Industry Programme (THRIP). We acknowledge the award of postgraduate scholarship to Mr M Mukama by DAAD (In-Region Scholarship Programme) and the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umezuruike Linus Opara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukama, M., Ambaw, A. & Opara, U.L. Thermal properties of whole and tissue parts of pomegranate (Punica granatum) fruit. Food Measure 13, 901–910 (2019). https://doi.org/10.1007/s11694-018-0004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-0004-1

Keywords

Navigation