Log in

Process standardization for isolation of quinoa starch and its characterization in comparison with other starches

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The studies about extraction of quinoa starch are scarce; therefore the process was optimised for its better yield. Starch was then compared with corn and C. album starch for different characteristics. To optimize conventional extraction of quinoa starch various combinations like water stee** and alkaline stee** (alkali concentration 0.20–0.30%) were used. Both methods showed higher starch yield from quinoa flour (32.97–48.45) than quinoa seeds (28.15–43.77). Quinoa flour showed 10.76% higher yield than seed at alkali concentration of 0.25%. The proximate analysis and purity of extracted starch showed the suitability of standard starch extraction process. Granule diameter varied from 0.766 to 4.050 µm for quinoa starch and from 3.78 to 51.94 µm for corn starch. Transmittance (%) was lower for quinoa starch than corn starch. The pasting temperature, breakdown and setback viscosities were lower for quinoa starch. Hardness of starch gel was higher for corn starch (31.98 g) than quinoa starch (26.61 g). Oil binding capacity and bulk density was higher for quinoa starch (159% and 0.69 g/mL) than corn starch (110% and 0.56 g/mL). The results suggest potential application of quinoa starch in food formulations requiring high viscosity and can also be utilized as safe and economic fat replacer and biodegradable materials due to small size which otherwise requires acid catalyzed hydrolysis for reduction of starch granule size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Ali, T.A. Wani, I.A. Wani, F.A. Masoodi, Comparative study of the physico-chemical properties of rice and corn starches grown in Indian temperate climate. J. Saudi Soc. Agric. Sci. 15(1), 75–82 (2014)

    Google Scholar 

  2. L. Alvarez-Jubete, E.K. Arendt, E. Gallagher, Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 21(2), 106–113 (2010)

    Article  CAS  Google Scholar 

  3. AOAC, Official Methods of Analysis, 18th edn. (Association of Official Analytical Chemists, Arlington, 2006)

    Google Scholar 

  4. G.S. Chauhan, N.A.M. Eskin,, R. Tkachuk, Nutrients and antinutrients in quinoa seed. Cereal Chem. 69, 85–88 (1992)

    CAS  Google Scholar 

  5. Z. Chen, H.A. Schols, A.G.J. Voragen, Starch granule size strongly determines starch noodle processing and noodle quality. J. Food Sci. 68(5), 1584–1589 (2003)

    Article  CAS  Google Scholar 

  6. S.A. Craig, C.C. Maningat, P.A. Seib, R.C. Hoseney, Starch paste clarity. Cereal chem. 66, 173–182 (1989)

    CAS  Google Scholar 

  7. I.M. Demiate, N. Dupuy, J.P. Huvenne, M.P. Cereda, G. Wosiacki, Relationship between baking behavior of modified cassava starches and starch chemical structure determined by FTIR spectroscopy. Carbohydr. Polym. 42(2), 149–158 (2000)

    Article  CAS  Google Scholar 

  8. K.O. Falade, A.S. Christopher, Physical, functional, pasting and thermal properties of flours and starches of six Nigerian rice cultivars. Food Hydrocoll. 44, 478–490 (2015)

    Article  CAS  Google Scholar 

  9. K.O. Falade, C.A. Okafor, Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches. Food Hydrocoll. 30(1), 173–181 (2013)

    Article  CAS  Google Scholar 

  10. J.M. Fang, P.A. Fowler, J. Tomkinson, C.A.S. Hill, The preparation and characterisation of a series of chemically modified potato starches. Carbohydr. Polym. 47(3), 245–252 (2002)

    Article  CAS  Google Scholar 

  11. R. Hoover, Y. Sailaja, F.W. Sosulski, Characterization of starches from wild and long grain brown rice. Food Res. Int. 29(2), 99–107 (1996)

    Article  CAS  Google Scholar 

  12. R. Jan, D.C. Saxena, S. Singh, Pasting, thermal, morphological, rheological and structural characteristics of Chenopodium (Chenopodium album) starch. LWT Food Sci. Technol. 66, 267–274 (2016)

    Article  CAS  Google Scholar 

  13. Y. Ji, K. Seetharaman, P.J. White, Optimizing a small-scale corn-starch extraction method for use in the laboratory. Cereal Chem. 81(1), 55–58 (2004)

    Article  CAS  Google Scholar 

  14. L. Kaur, J. Singh, O.J. McCarthy, H. Singh, Physico-chemical, rheological and structural properties of fractionated potato starches. J. Food Eng. 82(3), 383–394 (2007)

    Article  CAS  Google Scholar 

  15. C.Y. Lii, S.M. Chang, Characterization of red bean (Phaseolus radiatus var. Aurea) starch and its noodle quality. J. Food Sci. 46(1), 78–81 (1981)

    Article  Google Scholar 

  16. G. Li, S. Wang, F. Zhu, Physicochemical properties of quinoa starch. Carbohydr. Polym. 137, 328–338 (2016)

    Article  Google Scholar 

  17. Q.L. Lin, H.X. **ao, X.J. Fu, T.I.A.N. Wei,, L.H. Li, F.X. Yu, Physico-chemical properties of flour, starch, and modified starch of two rice varieties. Agric. Sci. China 10(6), 960–968 (2011)

    Article  CAS  Google Scholar 

  18. N. Lindeboom, P.R. Chang, K.C. Falk, R.T. Tyler, Characteristics of starch from eight quinoa lines. Cereal Chem. 82(2), 216–222 (2005)

    Article  CAS  Google Scholar 

  19. K. Lorenz, Quinoa (Chenopodium quinoa) starch—physico-chemical properties and functional characteristics. Starch-Stärke 42(3), 81–86 (1990)

    Article  CAS  Google Scholar 

  20. M.J. Miles, V.J. Morris, P.D. Orford, S.G. Ring, The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 135(2), 271–281 (1985)

    Article  CAS  Google Scholar 

  21. W.R. Morrison, B. Laignelet, An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1(1), 9–20 (1983)

    Article  CAS  Google Scholar 

  22. J.P. Mua, D.S. Jackson, Relationships between functional attributes and molecular structures of amylose and amylopectin fractions from corn starch. J. Agric. Food Chem. 45(10), 3848–3854 (1997)

    Article  CAS  Google Scholar 

  23. T. Noda, S. Tsuda, M. Mori, S. Takigawa, C. Matsuura-Endo, K. Saito, H. Yamauchi, The effect of harvest dates on the starch properties of various potato cultivars. Food Chem. 86(1), 119–125 (2004)

    Article  CAS  Google Scholar 

  24. B. Otegbayo, D. Oguniyan, O. Akinwumi, Physicochemical and functional characterization of yam starch for potential industrial applications. Starch-Stärke 66(3–4), 235–250 (2014)

    Article  CAS  Google Scholar 

  25. A.M. Pascoal, M.C.B. Di-Medeiros,, K.A. Batista, M.I.G. Leles,, L.M. Lião, K.F. Fernandes, Extraction and chemical characterization of starch from S. lycocarpum fruits. Carbohydr. Polym. 98(2), 1304–1310 (2013)

    Article  CAS  Google Scholar 

  26. C. Perera, R. Hoover, Influence of hydroxypropylation on retrogradation properties of native, defatted and heat-moisture treated potato starches. Food Chem. 64(3), 361–375 (1999)

    Article  CAS  Google Scholar 

  27. H. Puchongkavarin, S. Varavinit, W. Bergthaller, Comparative study of pilot scale rice starch production by an alkaline and an enzymatic process. Starch/Stärke 57, 134–144 (2005)

    Article  CAS  Google Scholar 

  28. J. Ruales, B.M. Nair, Properties of starch and dietary fibre in raw and processed quinoa (Chenopodium quinoa, Willd) seeds. Plant Foods Hum. Nutr. 45(3), 223–246 (1994)

    Article  CAS  Google Scholar 

  29. K.S. Sandhu, N. Singh, Some properties of corn starches II: physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 101(4), 1499–1507 (2007)

    Article  CAS  Google Scholar 

  30. K. Seetharaman, A. Tziotis, F. Borras, P.J. White, M. Ferrer, J. Robutti, Thermal and functional characterization of starch from Argentinean corn 1. Cereal Chem. 78(4), 379–386 (2001)

    Article  CAS  Google Scholar 

  31. J. Singh, N. Singh, Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches. Food Hydrocoll. 17(1), 63–72 (2003)

    Article  CAS  Google Scholar 

  32. N. Singh, J. Singh, L. Kaur, N.S. Sodhi, B.S. Gill, Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81(2), 219–231 (2003)

    Article  CAS  Google Scholar 

  33. S. Srichuwong, T.C. Sunarti, T. Mishima, N. Isono, M. Hisamatsu, Starches from different botanical sources I: contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr. Polym. 60(4), 529–538 (2005)

    Article  CAS  Google Scholar 

  34. R.F. Tester, W.R. Morrison, Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67(6), 551–557 (1990)

    CAS  Google Scholar 

  35. S.A. Watson, P.E. Ramstad, Structure and composition. Corn: Chemistry and Technology (1987), pp 53–82

  36. S.Y. Won, W. Choi, H.S. Lim, K.Y. Cho, S.T. Lim, Viscoelasticity of cowpea starch gels. Cereal Chem. 77(3), 309–314 (2000)

    Article  CAS  Google Scholar 

  37. K.H. Wright, K.C. Huber, D.J. Fairbanks, C.S. Huber, Isolation and characterization of Atriplex hortensis and sweet Chenopodium quinoa starches. Cereal Chem. 79(5), 715 (2002)

    Article  CAS  Google Scholar 

  38. W.T. Yamazaki, An alkaline water retention capacity test for the evaluation of cookie baking potentialities of soft winter wheat flours. Cereal Chem. 30(3), 242–246 (1953)

    CAS  Google Scholar 

Download references

Acknowledgements

Khan Nadiya Jan is thankful to UGC for providing financial assistance (Maulana Azad National Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Nadiya Jan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, K.N., Panesar, P.S. & Singh, S. Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. Food Measure 11, 1919–1927 (2017). https://doi.org/10.1007/s11694-017-9574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9574-6

Keywords

Navigation