Log in

De la dysfonction du tissu adipeux blanc aux phénotypes anatomocliniques de l’obésité

From adipose tissue dysfunction to anatomo-clinical phenotype of obesity

  • Article / Article
  • Published:
Obésité

Résumé

Les conséquences métaboliques de l’obésité sont moins liées à l’augmentation de la masse grasse (MG) qu’à la perte de la flexibilité métabolique du tissu adipeux (TA), qui ne joue plus son rôle de tampon vis-à-vis des flux d’acides gras libres (AGL). La dysfonction du TA évolue en plusieurs étapes: hypertrophie des adipocytes, sécrétion d’adipokines pro-inflammatoires, infiltration par des macrophages puis remodelage fibro-inflammatoire irréversible. L’altération du microenvironnement conduit à une diminution de l’adipogenèse, de même que la sénescence prématurée des préadipocytes. D’un point de vue mécanistique, le concept de capacité d’expansion du TA (expansibilité pour expandability) est séduisant: au-delà d’une certaine limite qui dépend de la taille et du nombre des adipocytes ainsi que de leurs propriétés fonctionnelles, les AGL qui ne peuvent plus être stockés sur place vont constituer des dépôts ectopiques de lipides dans d’autres tissus. L’insulinorésistance de l’obésité est le fait de deux mécanismes majeurs: 1) le dépassement de la capacité d’expansion du TA; 2) la production par le TA de nombreuses adipokines et cytokines pro-inflammatoires qui ont des effets inhibiteurs sur l’action de l’insuline, localement et à distance. Le syndrome métabolique est donc la conséquence de la dysfonction du TA. Les différents sites de TA ont des caractéristiques fonctionnelles variables. Le TA de la partie inférieure du corps apparaît comme protecteur. Le tissu adipeux viscéral (TAV), qui est un marqueur des dépôts ectopiques de lipides, est particulièrement délétère. Les différents phénotypes métaboliques de l’obésité décrivent un continuum de l’obésité androïde banale à la lipodystrophie partielle acquise (excès de TAVet défaut de TA périphérique), habituellement liée à l’âge, mais qui peut apparaître dès l’adolescence. L’obésité apparaît comme une maladie évolutive: croissance précoce et rapide lorsqu’elle commence dans l’enfance et vieillissement accéléré à l’âge adulte. Le phénotype anatomoclinique change avec l’âge et la durée de l’obésité. Sur le plan thérapeutique, le traitement doit être personnalisé pour tenir compte du seuil de MG au-delà duquel apparaissent les complications métaboliques. La prédiction de ce seuil (personal fat threshold) permettrait de tenter de ne pas dépasser cette limite pour éviter les complications métaboliques ou pour les faire régresser, lorsqu’elles apparaissent. En effet, selon des travaux récents, la rémission du diabète de type 2 ou de la stéatohépatite métabolique peut être induite par une perte de poids et de MG importante qui entraîne la disparition des dépôts ectopiques de lipides. De nouvelles stratégies (mode de vie, médicaments, chirurgie bariatrique « ciblée »), qui s’appuieraient sur un phénotypage précis des obésités, méritent d’être développées.

Abstract

The adverse metabolic consequences of obesity are less related to increased fat mass than to impaired metabolic flexibility of adipose tissue (AT), which has a special role in buffering free fatty acids fluxes. The primary signal leading to AT dysfunction is adipocyte hypertrophy leading to insulin resistance, secretion of proinflammatory adipokines, infiltration of macrophages, and finally irreversible fibro-inflammatory remodeling. The decrease of adipogenesis is also a consequence of microenvironment’s alteration as well as of the premature senescence of preadipocytes. From a mechanistic point of view, the AT expandability hypothesis (i.e., the capacity for AT expansion is limited) is attractive: beyond a certain limit, which depends on the size and number of adipocytes and their functional characteristics, excess free fatty acids are orientated to other tissues to form ectopic fat deposition. Obesity-related insulin resistance is the result of two major mechanisms: 1) impaired AT expandability; 2) abnormal AT production of many adipokines and cytokines, which have proinflammatory effects and inhibit insulin action at the local and systemic levels. Metabolic syndrome can be viewed as the result of AT dysfunction. Different AT depot sites have variable functional characteristics. Accumulation of AT in the lower body appears as protector. The visceral AT (VAT), that is, at least a surrogate marker of ectopic fat deposition, is more associated with metabolic disease than overall fat. The different subphenotypes of unhealthy obesity describe a continuum from the common android obesity (central obesity) to the acquired partial lipodystrophic adiposity (excess VAT and loss of peripheral fat), usually related to age, that has been also described in obese children or adolescents. Obesity appears as a progressive disease: early and rapid growth when it begins in childhood and accelerated aging in adulthood. Phenotypes can change as a result of aging or with obesity duration. For a therapeutic perspective, a weight management program has to be personalized to an individual’s threshold of metabolic complications. Prediction of personal fat threshold would help individuals to avoid AT expansion beyond which an overweight individual becomes metabolically unhealthy. There are new evidence that newly diagnosed type 2 diabetes or nonalcoholic steatohepatitis can be reversed by substantial weight and fat loss resulting in decreased ectopic fat deposition. So new strategies (lifestyle, drugs, “targeted” bariatric surgery) that would be based on a more accurate phenoty** of obesity should be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Danforth E, Jr (2000) Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Gen 26:13

    Article  CAS  Google Scholar 

  2. Frayn KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45:1201–10

    Article  CAS  PubMed  Google Scholar 

  3. McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18

    Article  CAS  PubMed  Google Scholar 

  4. Ravussin E, Smith SR (2002) Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci 967:363–78

    Article  CAS  PubMed  Google Scholar 

  5. Lewis GF, Carpentier A, Adeli K, et al (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–29

    Article  CAS  PubMed  Google Scholar 

  6. Boden G (2008) Obesity and free fatty acids. Endocrin Metab Clin North Am 37:635–46, viii–ix

    Article  CAS  Google Scholar 

  7. Dulloo AG, Jacquet J, Solinas G, et al (2010) Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes (Lond) 34:S4–S17

    Article  Google Scholar 

  8. Dulloo AG, Montani JP (2010) Phenoty** for early predictors of obesity and the metabolic syndrome. Int J Obes (Lond) 34:S1–S3

    Article  Google Scholar 

  9. Unger RH (1995) Lipotoxicity in the pathogenesis of obesitydependent NIDDM. Genetic and clinical implications. Diabetes 44:863–70

    CAS  PubMed  Google Scholar 

  10. Unger RH (2003) Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 14:398–403

    Article  CAS  PubMed  Google Scholar 

  11. Unger RH, Clark GO, Scherer PE, et al (2010) Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 1801:209–14

    Article  CAS  PubMed  Google Scholar 

  12. Unger RH, Scherer PE (2010) Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab 21:345–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome: an allostatic perspective. Biochim Biophys Acta 1801:338–49

    Article  CAS  PubMed  Google Scholar 

  14. Virtue S, Vidal-Puig A (2008) It’s not how fat you are, it’s what you do with it that counts. PLoS Biol 6:e237

    Article  CAS  Google Scholar 

  15. Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–7

    Article  CAS  PubMed  Google Scholar 

  16. Guri AJ, Bassaganya-Riera J (2011) Systemic effects of white adipose tissue dysregulation and obesity-related inflammation. Obesity (Silver Spring) 19:689–700

    Article  CAS  Google Scholar 

  17. Mittendorfer B (2011) Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Curr Opin Clin Nutr Metab Care 14:535–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bluher M (2013) Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab 27:163–77

    Article  PubMed  CAS  Google Scholar 

  19. Bluher M (2009) Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117:241–50

    Article  CAS  PubMed  Google Scholar 

  20. Ziegler O, Krempf M (2012) Le tissu adipeux est-il une cible thérapeutique pertinente de l’obésité ? In: Bastard JP, Fève B (eds) Physiologie et physiopatholopie du tissu adipeux. Springer, pp 405–36

    Google Scholar 

  21. Hardy OT, Czech MP, Corvera S (2012) What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 19:81–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen W, Wang Z, Punyanita M, et al (2003) Adipose tissue quantification by imaging methods: a proposed classification. Obes Res 11:5–16

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thomas EL, Fitzpatrick JA, Malik SJ, et al (2013) Whole body fat: content and distribution. Prog Nucl Magn Reson Spectrosc 73:56–80

    Article  CAS  PubMed  Google Scholar 

  24. Basdevant A, Clément K (2011) Histoire naturelle et origine des obésités. In: Basdevant A (ed) Traité médecine et chirurgie de l’obésité. Médecine Sciences publications, Lavoisier, Paris, pp 10–20

    Google Scholar 

  25. Basdevant A, Clément K, Oppert JM (2013) Vers de nouveaux phénotypes et de nouvelles nosographies: de l’obésité aux maladies du tissu adipeux. Obésité 8:234–43

    Article  Google Scholar 

  26. Lafontan M (2014) Adipose tissue and adipocyte dysregulation. Diabetes Metab 40:16–28

    Article  CAS  PubMed  Google Scholar 

  27. Rutkowski JM, Stern JH, Scherer PE (2015) The cell biology of fat expansion. J Cell Biol 208:501–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tchkonia T, Morbeck DE, Von Zglinicki T, et al (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jensen MD (2008) Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 93:S57–S63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stinkens R, Goossens GH, Jocken JW, et al (2015) Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 16:715–57

    Article  CAS  PubMed  Google Scholar 

  31. Corpeleijn E, Saris WH, Blaak EE (2009) Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obes Rev 10:178–93

    Article  CAS  PubMed  Google Scholar 

  32. Jensen MD, Sarr MG, Dumesic DA, et al (2003) Regional uptake of meal fatty acids in humans. Am J Physiol Endocrinol Metab 285:E1282–E8

    Article  CAS  PubMed  Google Scholar 

  33. Tchkonia T, Thomou T, Zhu Y, et al (2013) Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 17:644–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arner P, Bernard S, Salehpour M, et al (2011) Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478:110–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spalding KL, Arner E, Westermark PO, et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–7

    Article  CAS  PubMed  Google Scholar 

  36. Boulet N, Estève D, Bouloumié A, et al (2014) L’adipogenèse des tissus adipeux blanc: influence du microenvironnement. Obésité 9:42–55

    Article  Google Scholar 

  37. Arner E, Westermark PO, Spalding KL, et al (2010) Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59:105–9

    Article  CAS  PubMed  Google Scholar 

  38. Palmer AK, Tchkonia T, LeBrasseur NK, et al (2015) Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64:2289–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor R, Holman RR (2015). Normal weight individuals who develop type 2 diabetes: the personal fat threshold. Clin Sci (Lond) 128:405–10

    Article  Google Scholar 

  40. Alligier M, Meugnier E, Debard C, et al (2012) Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J Clin Endo Metab 97:E183–E92

    Article  CAS  Google Scholar 

  41. Sorensen TI, Virtue S, Vidal-Puig A (2010) Obesity as a clinical and public health problem: is there a need for a new definition based on lipotoxicity effects? Biochim Biophys Acta 1801:400–4

    Article  CAS  PubMed  Google Scholar 

  42. Guilherme A, Virbasius JV, Puri V, et al (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Divoux A, Tordjman J, Lacasa D, et al (2010) Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59:2817–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Westerink J, Visseren FL (2011) Pharmacological and nonpharmacological interventions to influence adipose tissue function. Cardiovasc Diabetol 10:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ryden M, Andersson DP, Bergstrom IB, et al (2014) Adipose tissue and metabolic alterations: regional differences in fat cell size and number matter, but differently: a cross-sectional study. J Clin Endocrinol Metab 99:e1870–E6

    Article  CAS  Google Scholar 

  46. Heinonen S, Saarinen L, Naukkarinen J, et al (2014) Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int J Obes (Lond) 38:1423–31

    Article  CAS  Google Scholar 

  47. Sun K, Tordjman J, Clement K, et al (2013) Fibrosis and adipose tissue dysfunction. Cell Metab 18:470–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121:2094–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pellegrinelli V, Heuvingh J, du Roure O, et al (2014) Human adipocyte function is impacted by mechanical cues. J Pathol 233:183–95

    Article  CAS  PubMed  Google Scholar 

  50. Abdennour M, Reggio S, Le Naour G, et al (2014) Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab 99:898–907

    Article  CAS  PubMed  Google Scholar 

  51. Tchkonia T, Zhu Y, van Deursen J, et al (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ailhaud G, Massiera F, Weill P, et al (2006) Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res 45:203–36

    Article  CAS  PubMed  Google Scholar 

  53. Massiera F, Barbry P, Guesnet P, et al (2010) A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J Lipid Res 51:2352–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McLaughlin T, Sherman A, Tsao P, et al (2007) Enhanced proportion of small adipose cells in insulin-resistant vs. insulinsensitive obese individuals implicates impaired adipogenesis. Diabetologia 50:1707–15

    Article  CAS  PubMed  Google Scholar 

  55. Arner P, Arner E, Hammarstedt A, et al (2011) Genetic predisposition for type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis. PloS One 6:e18284

    Article  CAS  Google Scholar 

  56. Goossens GH, Blaak EE (2015) Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol 6:55

    Article  Google Scholar 

  57. Davis KE, Neinast MD, Sun K, et al (2013) The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab 2:227–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kusminski CM, Scherer PE (2012) Mitochondrial dysfunction in white adipose tissue. Trends Endocrin Metab 23:435–43

    Article  CAS  Google Scholar 

  59. Karpe F, Pinnick KE (2015) Biology of upper-body and lowerbody adipose tissue: link to whole-body phenotypes. Nat Rev Endocrinol 11:90–100

    Article  CAS  PubMed  Google Scholar 

  60. Makdissy N, Haddad K, Mouawad C, et al (2015) Regulation of SREBPs by sphingomyelin in adipocytes via a caveolin and Ras- ERK-MAPK-CREB signaling pathway. PloS One 10:e0133181

    Article  CAS  Google Scholar 

  61. Al-Makdissy N, Younsi M, Pierre S, et al (2003) Sphingomyelin/cholesterol ratio: an important determinant of glucose transport mediated by GLUT-1 in 3T3-L1 preadipocytes. Cell Signal 15:1019–30

    Article  CAS  PubMed  Google Scholar 

  62. Zeghari N, Vidal H, Perche S, et al (1999) Adipose peroxisome proliferator-activated receptor gamma mRNA expression in insulin-resistant obese patients: relationship with adipocyte membrane phospholipids. Lipids 34:S161

    Article  CAS  PubMed  Google Scholar 

  63. Shulman GI (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 371:1131–41

    Article  PubMed  CAS  Google Scholar 

  64. Claussnitzer M, Dankel SN, Kim KH, et al (2015) FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 373:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tzanetakou IP, Katsilambros NL, Benetos A, et al (2012) “Is obesity linked to aging?”: adipose tissue and the role of telomeres. Ageing Res Rev 11:220–9

    Article  PubMed  Google Scholar 

  66. Ahima RS (2009) Connecting obesity, aging and diabetes. Nat Med 15:996–7

    Article  CAS  PubMed  Google Scholar 

  67. Szczepaniak LS, Victor RG, Orci L, et al (2007) Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res 101:759–67

    Article  CAS  PubMed  Google Scholar 

  68. Gaborit B, Abdesselam I, Kober F, et al (2015) Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int J Obes (Lond) 39:480–7

    Article  CAS  Google Scholar 

  69. Carobbio S, Rodriguez-Cuenca S, Vidal-Puig A (2011) Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. Curr Opin Clin Nutr Metab Care 14:520–6

    Article  CAS  PubMed  Google Scholar 

  70. Sattar N, Gill JM (2014) Type 2 diabetes as a disease of ectopic fat? BMC Med 12:123

    Article  PubMed  PubMed Central  Google Scholar 

  71. Taylor R (2013) Type 2 diabetes: etiology and reversibility. Diabetes Care 36:1047–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Unger RH (2005) Longevity, lipotoxicity and leptin: the adipocyte defense against feasting and famine. Biochimie 87:57–64

    Article  CAS  PubMed  Google Scholar 

  73. Unger RH, Zhou YT (2001) Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes 50:S118–S21

    Article  CAS  PubMed  Google Scholar 

  74. Vidal-Puig A, Unger RH (2010) Special issue on lipotoxicity. Biochim Biophys Acta 1801:207–8

    Article  CAS  PubMed  Google Scholar 

  75. Thomas EL, Parkinson JR, Frost GS, et al (2012) The missing risk: MRI and MRS phenoty** of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 20:76–87

    Article  CAS  Google Scholar 

  76. White UA, Tchoukalova YD (2014) Sex dimorphism and depot differences in adipose tissue function. Biochim Biophys Acta 1842:377–92

    Article  CAS  PubMed  Google Scholar 

  77. Fu J, Hofker M, Wijmenga C (2015) Apple or pear: size and shape matter. Cell Metab 21:507–8

    Article  CAS  PubMed  Google Scholar 

  78. Shungin D, Winkler TW, Croteau-Chonka DC, et al (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518:187–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Santosa S, Jensen MD (2015) The sexual dimorphism of lipid kinetics in humans. Front Endocrinol 6:103

    Article  Google Scholar 

  80. Votruba SB, Jensen MD (2007) Regional fat deposition as a factor in FFA metabolism. Annu Rev Nutr 27:149–63

    Article  CAS  PubMed  Google Scholar 

  81. Santosa S, Hensrud DD, Votruba SB, et al (2008) The influence of sex and obesity phenotype on meal fatty acid metabolism before and after weight loss. Am J Clin Nutri 88:1134–41

    CAS  Google Scholar 

  82. Santosa S, Jensen MD (2008) Why are we shaped differently, and why does it matter? Am J Physiol Endocrinol Metab 295: e531–E5

    Article  CAS  Google Scholar 

  83. Stanhope KL, Schwarz JM, Keim NL, et al (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119:1322–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nielsen S, Guo Z, Johnson CM, et al (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113:1582–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Palmer BF, Clegg DJ (2015) The sexual dimorphism of obesity. Mol Cell Endocrinol 402:113–9

    Article  CAS  PubMed  Google Scholar 

  86. Despres JP (2006) Is visceral obesity the cause of the metabolic syndrome? Ann Med 38:52–63

    Article  CAS  PubMed  Google Scholar 

  87. Tchernof A, Despres JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93:359–404

    Article  CAS  PubMed  Google Scholar 

  88. Arner P, Andersson DP, Thorne A, et al (2013) Variations in the size of the major omentum are primarily determined by fat cell number. J Clin Endocrinol Metab 98:e897–E901

    Article  Google Scholar 

  89. Tchoukalova YD, Votruba SB, Tchkonia T, et al (2010) Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci USA 107:18226–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–607

    CAS  PubMed  Google Scholar 

  91. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365:1415–28

    Article  CAS  PubMed  Google Scholar 

  92. Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocrin Rev 21:697–738

    Article  CAS  Google Scholar 

  93. Bays H (2014) Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr Opin Endocrinol Diabetes Obes 21:345–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Snijder MB, Visser M, Dekker JM, et al (2005) Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC study. Diabetologia 48:301–8

    CAS  PubMed  Google Scholar 

  95. Canoy D (2010) Coronary heart disease and body fat distribution. Curr Atheroscler Rep 12:125–33

    Article  PubMed  Google Scholar 

  96. Tanko LB, Bagger YZ, Alexandersen P, et al (2003) Peripheral adiposity exhibits an independent dominant antiatherogenic effect in elderly women. Circulation 107:1626–31

    Article  PubMed  Google Scholar 

  97. Shay CM, Carnethon MR, Church TR, et al (2011) Lower extremity fat mass is associated with insulin resistance in overweight and obese individuals: the CARDIA study. Obesity (Silver Spring) 19:2248–53

    Article  Google Scholar 

  98. Primeau V, Coderre L, Karelis AD, et al (2011) Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond) 35:971–81

    Article  CAS  Google Scholar 

  99. Pataky Z, Makoundou V, Nilsson P, et al (2011) Metabolic normality in overweight and obese subjects. Which parameters? Which risks? Int J Obes (Lond) 35:1208–15

    Article  CAS  Google Scholar 

  100. Kloting N, Fasshauer M, Dietrich A, et al (2010) Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299:e506–E15

    Article  CAS  Google Scholar 

  101. Bluher M (2010) The distinction of metabolically “healthy” from “unhealthy” obese individuals. Curr Opin Lipidol 21:38–43

    Article  PubMed  CAS  Google Scholar 

  102. Shea JL, Randell EW, Sun G (2011) The prevalence of metabolically healthy obese subjects defined by BMI and dual-energy X-ray absorptiometry. Obesity (Silver Spring) 19:624–30

    Article  CAS  Google Scholar 

  103. Kursawe R, Narayan D, Cali AM, et al (2010) Downregulation of ADIPOQ and PPARgamma2 gene expression in subcutaneous adipose tissue of obese adolescents with hepatic steatosis. Obesity (Silver Spring) 18:1911–7

    Article  CAS  Google Scholar 

  104. Morkedal B, Vatten LJ, Romundstad PR, et al (2014) Risk of myocardial infarction and heart failure among metabolically healthy but obese individuals: HUNT (Nord-Trondelag Health Study), Norway. J Am Coll Cardiol 63:1071–8

    Article  PubMed  Google Scholar 

  105. Rizkalla SW, Prifti E, Cotillard A, et al (2012) Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: a randomized controlled trial. Am J Clin Nutr 95:49–63

    Article  CAS  PubMed  Google Scholar 

  106. Cancello R, Henegar C, Viguerie N, et al (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54:2277–86

    Article  CAS  PubMed  Google Scholar 

  107. Capel F, Klimcakova E, Viguerie N, et al (2009) Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58:1558–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ruderman NB, Saha AK, Vavvas D, et al (1998) Malonyl CoA as a metabolic switch and a regulator of insulin sensitivity. Adv Exp Med Biol 441:263–70

    Article  CAS  PubMed  Google Scholar 

  109. Srinivasan SR, Myers L, Berenson GS (2002) Predictability of childhood adiposity and insulin for develo** insulin resistance syndrome (syndrome X) in young adulthood: the Bogalusa Heart Study. Diabetes 51:204–9

    Article  CAS  PubMed  Google Scholar 

  110. Garg A (2011) Clinical review#: lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab 96:3313–25

    Article  CAS  PubMed  Google Scholar 

  111. Taksali SE, Caprio S, Dziura J, et al (2008) High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes 57:367–71

    Article  CAS  PubMed  Google Scholar 

  112. Liska D, Dufour S, Zern TL, et al (2007) Interethnic differences in muscle, liver and abdominal fat partitioning in obese adolescents. PloS One 2:e569

    Article  CAS  Google Scholar 

  113. Anand SS, Tarnopolsky MA, Rashid S, et al (2011) Adipocyte hypertrophy, fatty liver and metabolic risk factors in South Asians: the Molecular Study of Health and Risk in Ethnic Groups (mol-SHARE). PloS One 6:e22112

    Article  CAS  Google Scholar 

  114. Weiss R, Taksali SE, Dufour S, et al (2005) The “obese insulinsensitive” adolescent: importance of adiponectin and lipid partitioning. J Clin Endocrinol Metab 90:3731–7

    Article  CAS  PubMed  Google Scholar 

  115. Zamboni M, Mazzali G, Fantin F, et al (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 18: 388–95

    Article  CAS  PubMed  Google Scholar 

  116. Stenholm S, Harris TB, Rantanen T, et al (2008) Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 11:693–700

    Article  PubMed  PubMed Central  Google Scholar 

  117. Prado CM, Siervo M, Mire E, et al (2014) A population-based approach to define body-composition phenotypes. Am J Clin Nutr 99:1369–77

    Article  CAS  PubMed  Google Scholar 

  118. Eckel RH (1992) Insulin resistance: an adaptation for weight maintenance. Lancet 340:1452–3

    Article  CAS  PubMed  Google Scholar 

  119. Alligier M, Gabert L, Meugnier E, et al (2013) Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. J Clin Endocrinol Metab 98:802–10

    Article  CAS  PubMed  Google Scholar 

  120. Johannsen DL, Tchoukalova Y, Tam CS, et al (2014) Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the “adipose tissue expandability” hypothesis. Diabetes Care 37:2789–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Medina-Gomez G, Gray SL, Yetukuri L, et al (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Gen 3:e64

    Article  CAS  Google Scholar 

  122. Lim EL, Hollingsworth KG, Aribisala BS, et al (2011) Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54:2506–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dixon JB, O’Brien PE, Playfair J, et al (2008) Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299:316–23

    CAS  PubMed  Google Scholar 

  124. Gregg EW, Chen H, Wagenknecht LE, et al (2012) Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA 308:2489–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al (2015) Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149:367–78 e5; quiz e14–e5

    Article  PubMed  Google Scholar 

  126. Tiikkainen M, Bergholm R, Vehkavaara S, et al (2003) Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes 52:701–7

    Article  CAS  PubMed  Google Scholar 

  127. Colles SL, Dixon JB, Marks P, et al (2006) Preoperative weight loss with a very-low-energy diet: quantitation of changes in liver and abdominal fat by serial imaging. J Clin Nutr 84:304–11

    CAS  Google Scholar 

  128. Kechagias S, Ernersson A, Dahlqvist O, et al (2008) Fastfood- based hyper-alimentation can induce rapid and profound elevation of serum alanine aminotransferase in healthy subjects. Gut 57:649–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Westerbacka J, Lammi K, Hakkinen AM, et al (2005) Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab 90:2804–9

    Article  CAS  PubMed  Google Scholar 

  130. Barker DJ, Osmond C, Forsen TJ, et al (2005) Trajectories of growth among children who have coronary events as adults. N Engl J Med 353:1802–9

    Article  CAS  PubMed  Google Scholar 

  131. Boney CM, Verma A, Tucker R, et al (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115:e290–6

    Article  Google Scholar 

  132. Nguyen QM, Srinivasan SR, Xu JH, et al (2008) Changes in risk variables of metabolic syndrome since childhood in prediabetic and type 2 diabetic subjects: the Bogalusa Heart Study. Diabetes Care 31:2044–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Youssef AA, Valdez R, Elkasabany A, et al (2002) Time-course of adiposity and fasting insulin from childhood to young adulthood in offspring of parents with coronary artery disease: the Bogalusa Heart Study. Ann Epidemiol 12:553–9

    Article  PubMed  Google Scholar 

  134. Sherar LB, Eisenmann JC, Chilibeck PD, et al (2011) Relationship between trajectories of trunk fat mass development in adolescence and cardiometabolic risk in young adulthood. Obesity (Silver Spring) 19:1699–706

    Article  Google Scholar 

  135. Lam YY, Mitchell AJ, Holmes AJ, et al (2011) Role of the gut in visceral fat inflammation and metabolic disorders. Obesity (Silver Spring) 19:2113–20

    Article  CAS  Google Scholar 

  136. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121:2126–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aron-Wisnewsky J, Clement K (2014) The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr Atheroscler Rep 16:454

    Article  PubMed  CAS  Google Scholar 

  138. Clement K (2011) Bariatric surgery, adipose tissue and gut microbiota. Int J Obes (Lond) 35:S7–S15

    Article  Google Scholar 

  139. Dao MC, Everard A, Aron-Wisnewsky J, et al (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–36

    Article  CAS  PubMed  Google Scholar 

  140. Kong LC, Holmes BA, Cotillard A, et al (2014) Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PloS one 9:e109434

    Article  CAS  Google Scholar 

  141. Sharma AM, Kushner RF (2009) A proposed clinical staging system for obesity. Int J Obes (Lond) 33:289–95

    Article  CAS  Google Scholar 

  142. Giugliano D, Esposito K (2008) Mediterranean diet and metabolic diseases. Curr Opin Lipidol 19:63–8

    CAS  PubMed  Google Scholar 

  143. Kastorini CM, Milionis HJ, Esposito K, et al (2011) The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol 57:1299–313

    Article  CAS  PubMed  Google Scholar 

  144. Patti ME (2010) Rehashing endocannabinoid antagonists: can we selectively target the periphery to safely treat obesity and type 2 diabetes? J Clin Invest 120:2646–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Peirce V, Carobbio S, Vidal-Puig A (2014) The different shades of fat. Nature 510:76–83

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ziegler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziegler, O., Böhme, P. & Valet, P. De la dysfonction du tissu adipeux blanc aux phénotypes anatomocliniques de l’obésité. Obes 12, 16–41 (2017). https://doi.org/10.1007/s11690-017-0555-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11690-017-0555-z

Mots clés

Keywords

Navigation