Log in

Microstructure and Yield Plateau of an Annealed Extruded Mg-Y-Cu Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and yield plateau of an annealed extruded Mg-6.8Y-2.5Cu alloy were investigated. During the annealing process, the 18R-LPSO phase transformed into a 14H-LPSO phase. With increasing annealing time, the grain size increased while the number of dislocations decreased in the extruded alloy. Uneven plastic deformation occurred in the annealed alloy during the yield stage, accompanied by Lüders band formation. The yield strain significantly decreased with extended annealing time. Dislocation multiplication and interactions between dislocations and solute atoms or second phases led to the formation of yielding phenomenon in both extruded and annealed alloys. The grain size and dislocation density affected the yield strain of the annealed alloy, and their corresponding influence mechanisms were evaluated for different annealing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Zhao, J. Chen, X. Wu et al., Design of a Mg-7Li-2.6Al-0.4Si Alloy with Simultaneously Improved Strength and Ductility, Mater. Today Commun., 2021, 27, p 102244. https://doi.org/10.1016/j.mtcomm.2021.102244

    Article  CAS  Google Scholar 

  2. Y.H. Liu, Z.R. Zhang, J. Wang et al., A Novel Mg-Gd-Y-Zn-Cu-Ni Alloy with Excellent Combination of Strength and Dissolution via Peak-Aging Treatment, J. Magn. Alloys, 2023, 11(2), p 720–734. https://doi.org/10.1016/j.jma.2022.05.012

    Article  CAS  Google Scholar 

  3. J. ** New Mg Alloy as Potential Bone Repair Material Via Constructing Weak Anode Nano-Lamellar Structure, J. Magn. Alloys, 2023, 11(1), p 154–175. https://doi.org/10.1016/j.jma.2022.08.011

    Article  CAS  Google Scholar 

  4. Z. Zhao, Y. Zhuang, T. Wang et al., Influence of Al-Si Eutectic Alloy on the Mechanical Behaviors and Microstructure Feature of Ultralight Dual-Phase Mg-8Li-x(Al-126 Si) Alloys, Mater. Today Commun., 2022, 30, p 103201. https://doi.org/10.1016/j.mtcomm.2022.103201

    Article  CAS  Google Scholar 

  5. Z. Zhao, X. Liu, S. Li et al., Study on Strengthening and Toughening of Mechanical Properties of Mg-Li Alloy by Adding Non-Rare-Earth Elements Al and Si, JOM, 2022, 74(7), p 2554–2565. https://doi.org/10.1007/s11837-022-05296-y

    Article  CAS  Google Scholar 

  6. Z. Zhang, J. **e, J. Zhang et al., Simultaneously Improving Yield Strength and Formability Potential of Mg Alloy Via Introducing Nano Precipitates and Texture-Weakened Heterogeneous Grains, J. Market. Res., 2023, 24, p 5486–5500. https://doi.org/10.1016/j.jmrt.2023.04.171

    Article  CAS  Google Scholar 

  7. Z. Wei, H. Dong, J. Zhang et al., Preparation of High Strength Mg–Li–Zn–Y Alloy by MgLi2Zn Precipitation, Mater. Sci. Eng., A, 2024, 890, 145842. https://doi.org/10.1016/j.msea.2023.145842

    Article  CAS  Google Scholar 

  8. Z. Li, J. Zhang, T. **ao et al., Regulating Microstructure and Improving Precipitation Hardening Response of Fine-Grained Mg-RE-Ag Hot-Extruded Alloy by Extreme Short-Time Heat Treatment, Mater. Sci. Eng., A, 2024, 892, 146059. https://doi.org/10.1016/j.msea.2023.146059

    Article  CAS  Google Scholar 

  9. T. Lee, C.H. Park, D.L. Lee et al., Enhancing Tensile Properties of Ultrafine-Grained Medium-Carbon Steel Utilizing Fine Carbides, Mater. Sci. Eng., A, 2011, 528(21), p 6558–6564. https://doi.org/10.1016/j.msea.2011.05.007

    Article  CAS  Google Scholar 

  10. W. Wen and J.G. Morris, The Effect of Cold Rolling and Annealing on the Serrated Yielding Phenomenon of AA5182 Aluminum Alloy, Mater. Sci. Eng., A, 2004, 373(1–2), p 204–216. https://doi.org/10.1016/j.msea.2004.01.041

    Article  CAS  Google Scholar 

  11. O. Nijs, B. Holmedal, J. Friis et al., Sub-Structure Strengthening and Work Hardening of an Ultra-Fine Grained Aluminium–Magnesium Alloy, Mater. Sci. Eng., A, 2008, 483, p 51–53. https://doi.org/10.1016/j.msea.2006.11.166

    Article  CAS  Google Scholar 

  12. B. Klusemann, G. Fischer, T. Böhlke et al., Thermomechanical Characterization of Portevin–Le Châtelier bands in AlMg3 (AA5754) and Modeling Based on a Modified Estrin–McCormick Approach, Int. J. Plast, 2015, 67, p 192–216. https://doi.org/10.1016/j.ijplas.2014.10.011

    Article  CAS  Google Scholar 

  13. J. Koike, T. Kobayashi, T. Mukai et al., The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51(7), p 2055–2065. https://doi.org/10.1016/s1359-6454(03)00005-3

    Article  CAS  Google Scholar 

  14. T. Zhao, Y. Hu, C. Zhang et al., Influence of Extrusion Conditions on Microstructure and Mechanical Properties of Mg-2Gd-0.3Zr Magnesium Alloy, J. Magn. Alloys, 2022, 10(2), p 387–399. https://doi.org/10.1016/j.jma.2020.06.019

    Article  CAS  Google Scholar 

  15. M. Bian, X. Huang, and Y. Chino, A Combined Experimental and Numerical Study on Room Temperature Formable Magnesiu-Silver-Calcium Alloys, J. Alloy. Compd., 2020, 834, 155017. https://doi.org/10.1016/j.jallcom.2020.155017

    Article  CAS  Google Scholar 

  16. S. Gao, A. Shibata, M. Chen et al., Correlation Between Continuous/Discontinuous Yielding and Hall-Petch Slope in High Purity Iron, Mater. Trans., 2014, 55(1), p 69–72. https://doi.org/10.1016/j.jallcom.2020.155017

    Article  CAS  Google Scholar 

  17. Y.N. Wang and J.C. Huang, The Role of Twinning and Untwinning in Yielding Behavior in Hot-Extruded Mg-Al-Zn Alloy, Acta Mater., 2007, 55(3), p 897–905. https://doi.org/10.1016/j.actamat.2006.09.010

    Article  CAS  Google Scholar 

  18. J. Wang, M.R.G. Ferdowsi, S.R. Kada et al., Influence of Precipitation on Yield Elongation in Mg-Zn Alloys, Scripta Mater., 2019, 160, p 5–8. https://doi.org/10.1016/j.scriptamat.2018.09.023

    Article  CAS  Google Scholar 

  19. O. Muránsky, M.R. Barnett, V. Luzin, and S. Vogel, On the Correlation Between Deformation Twinning and Lüders-Like Deformation in an Extruded Mg Alloy: In Situ Neutron Diffraction and EPSC.4 modelling, Mater. Sci. Eng. A, 2010, 527(6), p 1383–1394. https://doi.org/10.1016/j.msea.2009.10.018

    Article  CAS  Google Scholar 

  20. D. Zhang, H. Wen, M.A. Kumar et al., Yield Symmetry and Reduced Strength Differential in Mg-2.5Y Alloy, Acta Mater., 2016, 120, p 75–85. https://doi.org/10.1016/j.actamat.2016.08.037

    Article  CAS  Google Scholar 

  21. X. Luo, Z. Feng, T. Yu et al., Transitions in Mechanical Behavior and in Deformation Mechanisms Enhance the Strength and Ductility of Mg-3Gd, Acta Mater., 2020, 183, p 398–407. https://doi.org/10.1016/j.actamat.2019.11.034

    Article  CAS  Google Scholar 

  22. J. Wang, G. Zhu, L. Wang et al., Dislocation-Induced Plastic Instability in a Rare Earth Containing Magnesium Alloy, Materialia, 2021, 15, 101038. https://doi.org/10.1016/j.mtla.2021.101038

    Article  CAS  Google Scholar 

  23. G. Bi, N. Zhang, J. Jiang et al., Microstructure and Yield Phenomenon of an Extruded Mg-Y-Cu Alloy with LPSO Phase, J. Rare Earths, 2023, 41(3), p 454–461. https://doi.org/10.1016/j.jre.2022.01.011

    Article  CAS  Google Scholar 

  24. X. Yang, S. Wu, S. Lü et al., Effects of Ni Levels on Microstructure and Mechanical Properties of Mg-Ni-Y Alloy Reinforced with LPSO Structure, J. Alloy. Compd., 2017, 726, p 276–283. https://doi.org/10.1016/j.jallcom.2017.08.003

    Article  CAS  Google Scholar 

  25. G. Bi, D. Fang, L. Zhao et al., Double-Peak Ageing Behavior of Mg-2Dy-0.5Zn Alloy, J. Alloys Compd., 2011, 509(32), p 8268–8275. https://doi.org/10.1016/j.jallcom.2011.05.117

    Article  CAS  Google Scholar 

  26. C. Li, X. Li, X. Ke et al., Enhancing corrosion resistance of Mg-Li-Zn-Y-Mn Alloy Containing Long Period Stacking Ordered (LPSO) Structure through Homogenization Treatment, Corros. Sci., 2024, 228, 111829. https://doi.org/10.1016/j.corsci.2024.111829

    Article  CAS  Google Scholar 

  27. K. Liu, J. Zhang, D. Tang et al., Precipitates Formed in a Mg-7Y-4Gd-0.5Zn-0.4Zr Alloy During Isothermal Ageing at 250°C, Mater. Chem. Phys., 2009, 117(1), p 107–112. https://doi.org/10.1016/j.matchemphys.2009.05.015

    Article  CAS  Google Scholar 

  28. L. Yu, X. Chen, S. Wang et al., Atomic-Scale Observation of β′ and LPSO Phase in Mg–Y–Ni Alloy by HAADF-STEM, J. Mater. Res., 2019, 34(20), p 3545–3553. https://doi.org/10.1557/jmr.2019.147

    Article  CAS  Google Scholar 

  29. Y.M. Zhu, A.J. Morton, and J.F. Nie, Growth and Transformation Mechanisms of 18R and 14H in Mg-Y-Zn Alloys, Acta Mater., 2012, 60(19), p 6562–6572. https://doi.org/10.1016/j.actamat.2012.08.022

    Article  CAS  Google Scholar 

  30. Y. Yin, B. Li, Z. Yuan et al., Enhanced Hydrogen Storage Performance of Mg-Cu-Ni System Catalyzed by CeO2 Additive, J. Rare Earths, 2020, 38(9), p 983–993. https://doi.org/10.1016/j.jre.2019.07.010

    Article  CAS  Google Scholar 

  31. X. Cui, W. Fu, D. Fang et al., Mechanical Properties and Deformation Mechanisms of a Novel Fine-Grained Mg-Gd-Y-Ag-Zr-Ce Alloy with High Strength-Ductility Synergy, J. Mater. Sci. Technol., 2021, 66, p 64–73. https://doi.org/10.1016/j.jmst.2020.05.028

    Article  CAS  Google Scholar 

  32. R.G. Li, P.F. Song, G.L. Wu et al., Tensile Yielding Plateau in Fine-Grained Mg-15Gd Binary Alloy, Mater. Lett., 2022, 324, 132757. https://doi.org/10.1016/j.matlet.2022.132757

    Article  CAS  Google Scholar 

  33. W. Wang, W.U. Di, R. Chen et al., Influence of Temperature and Strain Rate on Serration Type Transition in NZ31 Mg Alloy, Trans. Nonferrous Metals Society of China, 2015, 25(11), p 3611–3617. https://doi.org/10.1016/s1003-6326(15)64002-x

    Article  CAS  Google Scholar 

  34. D.H. Johnson, M.R. Edwards, and P. Chard-Tuckey, Microstructural Effects on the Magnitude of Lüders Strains in a Low Alloy Steel, Mater. Sci. Eng., A, 2015, 625, p 36–45. https://doi.org/10.1016/j.msea.2014.11.084

    Article  CAS  Google Scholar 

  35. R.G. Li, D.Y. Zhao, J.H. Zhang et al., Room Temperature Yielding Phenomenon in Extruded or/and Aged Mg-14Gd-2Ag-0.5Zr alloy with Fine-Grained Microstructure, Mater. Sci. Eng. A, 2020, 787, p 139551. https://doi.org/10.1016/j.msea.2020.139551

    Article  CAS  Google Scholar 

  36. W.H. Yang, A Generalized von Mises Criterion for Yield and Fracture, J. Appl. Mech., 1980, 47(2), p 297–300. https://doi.org/10.1115/1.3153658

    Article  Google Scholar 

  37. J. Koike, R. Ohyama, T. Kobayashi et al., Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K, Mater. Trans., 2003, 44(4), p 445–451. https://doi.org/10.2320/matertrans.44.445

    Article  CAS  Google Scholar 

  38. J.P. Bailon, A. Loyer, and J.M. Dorlot, The Relationships Between Stress, Strain, Grain Size and Dislocation Density in Armco Iron at Room Temperature, Mater. Sci. Eng., 1971, 8(5), p 288–298. https://doi.org/10.1016/0025-5416(71)90095-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundations of China (Nos. 52261027, 52001152 and 51961021), Project supported by the Natural Science Foundation of Gansu Province, China (No. 22JR5RA251), Undergraduate Innovation and Entrepreneurship Training Program (Nos. DC20231188, DC20231482 and DC20231558), and Sinoma Institute of Materials Research (Guang Zhou) Co., Ltd (SIMR) for hel** TEM/SEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangli Bi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, G., Yan, H., Jiang, J. et al. Microstructure and Yield Plateau of an Annealed Extruded Mg-Y-Cu Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09639-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09639-5

Keywords

Navigation