Log in

Numerical Simulation of In Situ Reaction Synthesis of TiC-Reinforced Steels from Elemental Fe-Ti-C Powders

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research presents a study of the thermal synthesis of titanium carbide (TiC) within the Fe-Ti-C system, utilizing a physically grounded semi-empirical mathematical model. The model enables estimation of TiC formation, including nucleation, growth, and the associated time-temperature regime. It incorporates numerical descriptions of thermal, diffusion, and chemical processes, accounting for phase transformations and their dependencies on chemical composition. The study’s key focus is on assessing the impact of system parameters, including chemical composition and furnace temperature, on the kinetics of TiC thermal synthesis. Simulation results demonstrate the profound influence of Fe content on combustion temperature and particle sizes, aligning closely with experimental data. The research not only examines average size values but also delves into carbide particle size distribution. The findings provide valuable insights into optimizing Fe-TiC composites production processes and the developed computer model serves as a useful tool for preliminary investigations, and it complements experimental research, offering a holistic understanding of system behavior and responses to parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. D.J. Miller and J.A. Pask, Liquid-phase sintering of TiC-Ni composites, J. Am. Ceram. Soc., 1983, 66, p 841–846. https://doi.org/10.1111/j.1151-2916.1983.tb10998.x

    Article  CAS  Google Scholar 

  2. H. Nakanishi, I. Tanaka, T. Okamoto, Y. Miyamoto, and O. Yamada, Reaction heat sintering using HIP—densification of TiC-Ni composites, J. Jpn. Soc. Powder Powder Metall., 1990, 37, p 105.

    Article  Google Scholar 

  3. M.R. Rahimipour and M. Sobhani, Evaluation of centrifugal casting process parameters for in situ fabricated functionally gradient Fe-TiC composite, Met. Mater. Trans. Mater. Process. Sci., 2013, 44, p 1120–1123. https://doi.org/10.1007/s11663-013-9903-z

    Article  CAS  Google Scholar 

  4. I.S. Deschamps, D. dos Santos Avila, E. Vanzuita Piazera, R.R.C. Dudley Cruz, C. Aguilar, and A. NelmoKlein, Design of in situ metal matrix composites produced by powder metallurgy a critical review, Metals, 2022, 12, p 2073. https://doi.org/10.3390/met12122073

    Article  CAS  Google Scholar 

  5. M. Jõeleht, The influence of sintering temperature of reactive sintered (Ti, Mo)C-Ni cermets, Mater. Sci., 2015, 21(21), p 435–438. https://doi.org/10.5755/j01.ms.21.3.7179

    Article  Google Scholar 

  6. A.N. Tabachenko, T.A. Panteleeva, and V.I. Itin, Interaction of titanium and carbon burning in the presence of a solution-melt, Combust. Explos. Shock Waves, 1984, 20, p 387–391.

    Article  Google Scholar 

  7. S.D. Dunmead, D.W. Readey, C.E. Selmer, and J.B. Hol, Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni Systems, J. Am. Ceram. Soc., 1989, 72, p 2318–2324. https://doi.org/10.1111/j.1151-2916.1989.tb06083.x

    Article  CAS  Google Scholar 

  8. Y. Choi and S.-W. Rhee, Effect of iron and cobalt addition on TiC combustion synthesis, J. Mater. Res., 1993, 8, p 3202–3209. https://doi.org/10.1557/JMR.1993.3202

    Article  CAS  Google Scholar 

  9. K. Feng, C. Bai, Y. Yang, W. Wang, and F. Ji, Combustion synthesis of TiC–Fe composites under the action of an electric field, ISIJ Int., 2007, 42, p 648–651. https://doi.org/10.2355/isi**ternational.47.648

    Article  Google Scholar 

  10. S. **, H. Su, and G. Sha, Atom probe tomography analysis of TiCx powders synthesized by SHS in Al/Fe/Cu–Ti–C systems, Materials, 2019, 12, p 1–10. https://doi.org/10.3390/ma12244095

    Article  CAS  Google Scholar 

  11. A. Saidi, A. Chrysanthou, and J.V. Wood, Characteristics of the combustion synthesis of TiC and Fe-TiC composites, J. Mater. Sci., 1994, 29, p 4993–4998. https://doi.org/10.1007/BF01151089

    Article  CAS  Google Scholar 

  12. J. Wang and S.J. Fu, Fe–Ti–C composite produced by self-propagating high temperature synthesis, Powder Metall., 2008, 51, p 295–297. https://doi.org/10.1179/174329007X204894

    Article  CAS  Google Scholar 

  13. H. Zhu, K. Dong, H. Wang, J. Huang, J. Li, and Z. **e, Reaction mechanisms of the TiC/Fe composite fabricated by exothermicp dispersion from Fe–Ti–C element system, Powder Technol., 2013, 246, p 456–461. https://doi.org/10.1016/j.powtec.2013.06.002

    Article  CAS  Google Scholar 

  14. A.G. Merzhanov, Fundamentals, achievements, and perspectives for development of solid-flame combustion, Russ. Chem. Bull., 1997, 46, p 1–27.

    Article  CAS  Google Scholar 

  15. A.G. Merzhanov, The theory of stable homogeneous combustion of condensed substances, Combust. Flame, 1969, 13, p 143–156.

    Article  CAS  Google Scholar 

  16. O. Verezub, Z. Kálazi, G. Buza, N.V. Verezub, and G. Kaptay, Classification of laser beam induced surface engineering technologies andin situsynthesis of steel matrix surface nanocomposites, Surf. Eng., 2011, 27, p 428–435. https://doi.org/10.1179/174329409X446296

    Article  CAS  Google Scholar 

  17. E.O. Mokhnache, G.-S. Wang, L. Geng, K. Balasubramaniam, A. Henniche, and N. Ramdani, In situ (α-Al2O3+ZrB2)/Al composites with network distribution fabricated by reaction hot pressing, Int. J. Miner. Met. Mater., 2016, 22, p 1092–1100.

    Article  Google Scholar 

  18. M. Zhu, Y. Jiang, Y. Sui, and M. Zhou, Study on microstructure and abrasive wear properties of in-situ TiC reinforced high chromium cast iron matrix composite, Mater. Res. Express., 2022 https://doi.org/10.1088/2053-1591/ac5b02

    Article  Google Scholar 

  19. J.B. Holt and Z.A. Munir, Combustion synthesis of titanium carbide: theory and experiment, J. Mater. Sci., 1986, 21, p 251–259.

    Article  CAS  Google Scholar 

  20. M.X. Zhang, Q.D. Hu, B. Huang, J.Z. Li, and J.G. Li, Study of formation behavior of TiC in the Fe–Ti–C system during combustion synthesis, Int. J. Refract. Met. Hard Mater., 2011, 29, p 356–360. https://doi.org/10.1016/j.ijrmhm.2011.01.001

    Article  CAS  Google Scholar 

  21. V.V. Kaverinsky, G.A. Bagliuk, and Z.P. Sukhenko, Numerical simulation of in situ reaction synthesis of TiC reinforced aluminum matrix composite from elemental Al-Ti-C powders, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08650-6

    Article  Google Scholar 

  22. A.A. Vasilyev and P.A. Golikov, Carbon diffusion coefficient in alloyed ferrite, Mater. Phys. Mech., 2019, 39, p 111–119. https://doi.org/10.18720/MPM.3912018_17

    Article  Google Scholar 

  23. J. Agren, A revised expression for the diffusivity of carbon in binary Fe-C austenite, Scr. Metall., 1986, 20, p 1507–1510.

    Article  CAS  Google Scholar 

  24. A. Vasilyev, Carbon diffusion coefficient in complexly alloyed austenite, Mater. Sci. Technol., 2018, 2018, p 537–551. https://doi.org/10.13140/2.1.5050.9125

    Article  Google Scholar 

  25. L. Scotti and A. Mottura, Interstitial diffusion of O, N, and C in α-Ti from first-principles: analytical model and kinetic Monte Carlo simulations, J. Chem. Phys., 2016, 144, 084701. https://doi.org/10.1063/1.4942030

    Article  CAS  PubMed  Google Scholar 

  26. F.J.J. Loo and G.F. Bastin, On the diffusion of carbon in titanium carbide, Metall. Trans. A, 1989, 20, p 403–411. https://doi.org/10.1007/bf02653919

    Article  Google Scholar 

  27. A.M. Skrebtsov, A.G. Siaditi, and Y.A. Demchenko, Diffusion of carbon and chromium in steel casting lade during exploitation, Bull. Azov State Tech. Univ., 1999, 8, p 37–40.

    Google Scholar 

  28. V.P. Shapovalov and A.N. Kurasov, Diffusion of titanium in iron, Met. Sci. Heat Treat., 1975, 17, p 803–805. https://doi.org/10.1007/bf00703075

    Article  Google Scholar 

  29. P. Klugkist and C. Herzig, Tracer diffusion of titanium in α-iron, Phys. Stat. Sol. A, 1995, 148, p 413–421. https://doi.org/10.1002/pssa.2211480209

    Article  CAS  Google Scholar 

  30. E. A. Krivonosova. Modeling of kinetics of modifying phases formation during welding and high concentration energy processing. Bulletin of Tul.S.U. Technical sciences. 6 (2015). 71–83.

  31. L. Scotti and A. Mottura, Diffusion anisotropy of poor metal solute atoms in hcp-Ti, J. Chem. Phys., 2015, 142, p 204–308. https://doi.org/10.1063/1.4921780

    Article  CAS  Google Scholar 

  32. W. Gierlotka, G. Lothongkum, B. Lohwongwatana, and C. Puncreoburt, Atomic mobility in titanium grade 5 (Ti6Al4V), J. Min. Metal. B., 2019, 55, p 65–77. https://doi.org/10.2298/JMMB180620030G

    Article  CAS  Google Scholar 

  33. L. Scotti and A. Mottura, First-principles investigation of solute diffusion mechanisms in alpha-Ti. In Proceedings of the 13th World Conference on Titanium (2016), pp. 1901–1906. https://doi.org/10.1002/9781119296126.ch318

  34. C. Yu, P. Cao, and M.I. Jones, Microstructural evolution during pressureless sintering of blended elemental Ti-Al-V-Fe titanium alloys from fine hydrogenated-dehydrogenated titanium powder, Metals, 2017, 7, p 285–304. https://doi.org/10.3390/met7080285

    Article  CAS  Google Scholar 

  35. S.L. Makurov, Study of iron based melts viscosity by crucible torsional vibrations, Bull. Azov State Tech. Univ., 1997, 2, p 40–42.

    Google Scholar 

  36. S. Li, Y. Chen, J. Kang, Y. Huang, J.A. Gianetto, and L. Yin, Interfacial microstructures and mechanical properties of dissimilar titanium alloy and steel friction stir butt-welds, J. Manuf. Process., 2019, 40, p 160–168. https://doi.org/10.1016/j.jmapro.2019.03.015

    Article  CAS  Google Scholar 

  37. C. Yu and P. Cao, Microstructural evolution during pressureless sintering of blended elemental Ti-Al-V-Fe titanium alloys from fine hydrogenated-dehydrogenated titanium powder, Metals, 2017, 7, p 285. https://doi.org/10.3390/met7080285

    Article  CAS  Google Scholar 

  38. H. Nakajima, S. Ohshida, K. Nonaka, Y. Yoshida, and F.E. Fujita, Diffusion of iron in β Ti-Fe alloys, Scr. Mater., 1996, 34, p 949–953. https://doi.org/10.1016/1359-6462(95)00617-6

    Article  CAS  Google Scholar 

  39. H.W. Mead and C.E. Birchenall, Self-diffusion of iron in Austenite, JOM, 1956, 8, p 1336–1339. https://doi.org/10.1007/bf03377878

    Article  CAS  Google Scholar 

  40. F. Buffington, K. Hirano, and M. Cohen, Self diffusion in iron, Acta Metall., 1961, 9, p 434–439. https://doi.org/10.1016/0001-6160(61)90137-7

    Article  CAS  Google Scholar 

  41. A. Meyer, L. Hennig, F. Kargl, and T. Unruh, Iron self diffusion in liquid pure iron and iron-carbon alloys, J. Phys. Condens. Matter, 2019, 31, p 395–401. https://doi.org/10.1088/1361-648x/ab2855

    Article  CAS  Google Scholar 

  42. H.S. Zurob, C.R. Hutchison, Y. Brechet, and G. Purdy, Modelling recrystallisation of microalloyed austenite: effect of coupling recovery, presipitation and recrystallization, Acta Mater., 2002, 50, p 3075–3092. https://doi.org/10.1016/S1359-6454(02)00097-6

    Article  CAS  Google Scholar 

  43. T. Nawaya, W. Back, and A. von Hehl. Tensile properties of α-titanium alloys at elevated temperatures. In MATEC Web of Conferences 321The 14th World Conference on Titanium”. (2020). https://doi.org/10.1051/matecconf/202032104016

  44. H.S. Zurob, C.R. Hutchison, Y. Brechet, and G. Purdy, A model for the competition of precipitation and recrystallization in deformed austenite, Acta Mater., 2001, 49, p 4183–4190. https://doi.org/10.1016/S1359-6454(01)00315-9

    Article  CAS  Google Scholar 

  45. D.V. Bavbande, R. Mishra, and J.M. Juneja, Studies on the kinetics of synthesis of TiC by calciothermic reduction of TiO2 in presence of carbon, J. Therm. Anal. Calorim., 2004, 78, p 775–780. https://doi.org/10.1155/2015/469121

    Article  CAS  Google Scholar 

  46. A.I. Gusev, Phase equilibria, phases and compounds in the Ti–C system, Russ. Chem. Rev., 2002, 71, p 507–532. https://doi.org/10.1070/RC2002v071n06ABEH000721

    Article  CAS  Google Scholar 

  47. W. Gąsior and A. Dębski, Enthalpy of formation of intermetallic phases from Fe-Ni-Ti system. Comparative studies, Arch. Metall. Mater., 2012, 4, p 1095–1104. https://doi.org/10.2478/v10172-012-0122-4

    Article  CAS  Google Scholar 

  48. B. Dutta, E.J. Palmiere, and C.M. Sellars, Modelling the kinetics of strain induced precipitation in Nb microalloyed steels, Acta Mater., 2001, 49(49), p 785–794.

    Article  CAS  Google Scholar 

  49. M. Perez, N. Dumont, and D. Acevedo-Reyes, Implementation of classical nucleation and growth theories for precipitation, Acta Mater., 2008, 56, p 2119–2132. https://doi.org/10.1016/j.actamat.2007.12.050

    Article  CAS  Google Scholar 

  50. S. F. Sokolov. Research and modeling of the evolution of microstructure and resistance to deformation of steels during hot forming: dissertation. Ph.D. tech. sciences: 05.16.05, 05.16.01. St. Petersburg (2013).

  51. K. Xu, B.G. Thomas, and R. Malley, Equilibrium model of precipitation in micro-alloyed steels, Metall. Mater. Trans. A, 2011, 42A, p 524–539.

    Article  Google Scholar 

  52. M. Verdier, Y. Brechet, and P. Guyot, Recovery of AlMg alloys: flow stress and strain-hardening properties, Acta Mater., 1999, 47, p 127–134.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The presented study was performed within the departmental project 1030 III-5-21 “Scientific and technological principles of synthesis and consolidation of high-wear composites based on alloys of aluminium and titanium reinforced with high-modulus compounds” of the National Academy of Science of Ukraine.

Author information

Authors and Affiliations

Authors

Contributions

V.V. Kaverinsky helped in investigation, formal analysis, writing–original draft, visualization, software, methodology. G.A. Bagliuk was involved in conceptualization, resources, validation, writing–review & editing, supervision, project administration. Z.P. Sukhenko contributed to validation, resources, data curation, writing–review & editing, visualization.

Corresponding authors

Correspondence to V. V. Kaverinsky or G. A. Bagliuk.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Heat Transfer Calculation Data and Equations

Α coefficient dictated by the Nusselt number (Nu):

$$\alpha = \frac{{{\text{Nu}} \cdot \lambda }}{l}$$
(11)

where λ is thermal conductivity coefficient of the environment, W/m·K; l is a characteristic size, m.

The empirical equations used for the Nusselt number estimation:

For the flat horizontal surfaces:

$${\text{Nu}}_{flat} = m \cdot \left( {\Pr \cdot {\text{Gr}}} \right)^{n}$$
(12)

For the cylindrical side surfaces

$${\text{Nu}}_{{{\text{side}}}} = m \cdot \left( {\Pr_{{T - {\text{env}}}} \cdot {\text{Gr}}} \right)^{n} \cdot \left( {\frac{{\Pr_{{T - {\text{env}}}} }}{{\Pr_{{T - {\text{surf}}}} }}} \right)^{p}$$
(13)

where PrT-env is Prandtl number of the environment at the common environment temperature; PrT-env is Prandtl number of the environment at the heat transfer surface temperature.

Values of the empirical parameters in Eq 12 and 13 depending on the Pr × Gr product are given in Table

Table 2 Empirical parameters for the Nusselt number calculation

2.

The Grashof number:

$${\text{Gr}} = \frac{{g \cdot l^{3} \cdot \beta \cdot \Delta T}}{{\upsilon^{2} }}$$
(14)

where g is gravitation acceleration, m/s2; l is a characteristic size, m; β is the coefficient of volume expansion of the environment, K-1; ΔT is the difference between the object surface and the environment temperatures, K; υ is the kinematic viscosity of the environment, m2/s.

The effective approximate value of volume expansion coefficient β:

$$\beta = \frac{{T_{1} + T_{2} }}{{2 \cdot T_{1} \cdot T_{2} }}$$
(15)

where T1 and T2 are, correspondently, the bulk and near the surface (≈ the sample surface temperature) temperatures of the environment.

The temperature dependences of the kinematic viscosity υ and thermal conductivity coefficient of the environment λ were given through a second-degree polynomial with empirical coefficients (16):

$$\nu ,\lambda = a_{0} + a_{1} \cdot T + a_{2} \cdot T^{2}$$
(16)

The following values of the factors a0, a1 and a2 were used:

For kinematic viscosity: a0 = 1.31 × 10−5, a1 = 9.97 × 10−8, a2 = 6.49 × 10−11

For thermal conductivity: a0 = 0.0246, a1 = 7.57 × 10−5, a2 = − 2.02 × 10−8

For the radiation heat transfer the heat flux from/to the surface:

$$q = \varepsilon_{{{\text{np}}}} \cdot C_{0} \cdot \left( {T_{{{\text{out}}}}^{4} - T_{{{\text{surf}}}}^{4} } \right)$$
(17)

where εnp is emissivity factor; C0 is black body emissivity, W/m2·K4 C0 = 5.67 × 10−8; Tout is the temperature at the muffle wall surface (≈ inner environment temperature), K; Tsurf is the temperature of the sample surface, K.

The reduced emissivity factor εnp depends of the ones of the sample and the muffle wall:

$$\varepsilon_{{{\text{np}}}} = \frac{1}{{\frac{1}{{\varepsilon_{1} }} + \frac{1}{{\varepsilon_{2} }} - 1}}$$
(18)

where ε1 and ε2 are correspondently the emissivity factors of the sample and the muffle wall.

The true values of the emissivity factors are not precisely known and could somewhat differ in real systems. For the modeling purpose they assumed to be dependent on temperature according to the following proposed empirical formulas for their estimation:

$${\text{For}}\;{\text{the}}\;{\text{sample}}:\varepsilon = 1.13 \cdot e^{{ - \frac{977}{T}}}$$
(19)
$${\text{For}}\;{\text{the}}\;{\text{muffle}}\;{\text{wall}}:\varepsilon = 1.56 \cdot e^{{ - \frac{1479}{T}}}$$
(20)

So the resulting emissivity factor εnp varied from ~ 0.05 to ~ 0.6 in the considered temperature range.

Appendix 2. Thermophysical Properties Used in the Simulation

Reactions heat effects estimation equations (grounded on the data from Ref 46, 47):

$$\begin{aligned} - \Delta H_{TiC} = & 186.7 + (15.86 + 12.03 \times 10^{ - 3} \cdot T + 9.67 \times 10^{ - 6} \cdot T^{2} - 6051.5 \times T^{ - 1} ) \\ & \; + ( - 22.80 + 6.17 \times 10^{ - 3} \cdot T - 3.09 \times 10^{ - 6} \cdot T^{2} + 6326.2 \times T^{ - 1} ) \cdot x_{C} + \\ & \; + ( - 5.680 + 19.06 \times 10^{ - 3} \cdot T) \cdot x_{C}^{2} \;\;\;\;\;\;\;{\text{kJ}}/{\text{mol}} \\ \end{aligned}$$
(21)
$$- \Delta H_{{{\text{TiFe}}_{2} }} = 7.8125 + 0.002136 \cdot T + 2{9}{\text{.375}} \cdot x_{{{\text{Fe}}}} \;\;\;{\text{kJ}}/{\text{mol}}$$
(22)

where xC and xFe are, correspondently, atomic fractions of C and Fe in the formed compound assuming that TiC and TiFe2 have wide homogeneity regions, and the value of enthalpy depends on the exact composition.

The temperature dependences of the specific heat (Cp) and density (ρ) values were approximated by second degree polynomial equations like 23:

$$C_{p} ,\rho = a_{0} + a_{1} \cdot T + a_{2} \cdot T^{2}$$
(23)

The values of the empirical factors a0, a1 and a2 are presented in Table

Table 3 Empirical parameters for the specific heat and density values calculation by Eq 23

3. The presented values are the result of our approximations made based on data collected from different resources such as internet searches, paper reference books, software databases, etc.

Appendix 3. Equations Used for Particles Nucleation Description

The excess phases’ particles nucleation is described by the equation from Ref 48:

$$\frac{{{\text{d}}N}}{{{\text{d}}t}} = N_{n} \cdot F_{{\text{Z}}} \cdot \beta \cdot \exp \left( { - \frac{{\Delta G_{C} }}{{K_{{\text{B}}} \cdot T}}} \right)$$
(24)

where Nn is a volumetric density of the potential nucleation centers, m-−3; FZ is the Zeldovich factor [49]; β is a factor corresponding to the diffusive accession of the atoms to the nuclei of critical size; ΔGC is a thermodynamic barrier of nucleation, J/mol.

The Zeldovich factor FZ allows to conceder the possibility of the fluctuation dissolution of the nuclei with a size more than the critical one. It can be estimated as follows:

$${\text{F}}_{{\text{Z}}} = \sqrt {\frac{{\Delta G_{C} }}{{3 \cdot \pi \cdot R \cdot T \cdot n_{C}^{2} }}}$$
(25)

where nc is the number of the effective elemental volumes of the compound in the nuclei.

If to assume a spherical shape of the nuclei nc could be calculated by the following formula 26:

$$n_{c} = \frac{4}{3} \cdot \pi \cdot \frac{{R_{{\text{C}}}^{3} }}{{V_{a} }}$$
(26)

where RC is the critical radius of the nuclei, m; Va—the conventional effective elemental volume of the compound.

The conditional elementary volume Va is calculated as the ratio of the molar volume of a given compound to the Avogadro’s number.

The critical radius RC is calculated according to Ref 50 by Eq 27:

$$R_{{\text{C}}} = - \frac{{2 \cdot \gamma_{{{\text{p}}/\gamma }} }}{{\Delta G_{p} }}$$
(27)

where γp/γ is the specific surface energy on the border particle/matrix, J/m2; ΔGp is the volumetric Gibbs energy change, J/m3.

The value of ΔGp was estimated in the way like in [51]:

$$\Delta G_{p} = - \frac{R \cdot T}{{V_{{\text{m}}} }} \cdot \ln \frac{{X_{{{\text{Me}}}} \cdot X_{C}^{*} }}{{X_{{{\text{Me}}}}^{{{\text{eq}}}} \cdot X_{C}^{{*{\text{eq}}}} }}$$
(28)

where Vm is the molar volume of the compound, m3/mol; XMe and XC* are molar parts of the components (if it is a carbide XC* is the part of carbon); XMeeq and XC*eq are the equilibrium molar parts of the components in the solid solution.

It was assumed that the nuclei appear at the dislocations grid modes. So the potential nucleation sites density was estimated according to Ref 48 by formula 29:

$$N_{0} = 0.5 \cdot \rho_{{\text{d}}}^{1.5}$$
(29)

where ρd is dislocation density, m−1.

According to the considerations from Ref 50 and 52 the dislocation density was estimated as follows (30):

$$\rho_{{\text{d}}} = \left( {\frac{{\sigma_{{\text{Y}}} }}{\alpha \cdot \mu \cdot b}} \right)^{2}$$
(30)

where σY is the yield strength of the phase, Pa; μ is the shear modulus, Pa; b is the Burgers vector modulus value, m; α is an empirical factor.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaverinsky, V.V., Bagliuk, G.A. & Sukhenko, Z.P. Numerical Simulation of In Situ Reaction Synthesis of TiC-Reinforced Steels from Elemental Fe-Ti-C Powders. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09574-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09574-5

Keywords

Navigation