Log in

Microstructure, Texture Evolution, and Mechanical Properties of Thin AZ31B Mg Alloy Sheets Prepared by Two-Stage Rolling

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Magnesium (Mg) sheets that are thinner than 1 mm show significant advantages in the fabrication of shells of electronic equipment, as they are lightweight while also providing excellent electromagnetic shielding. Rolling is the most commonly used method for preparing such thin sheets, but it easily leads to edge cracks and poor mechanical properties related to the evolution of grain structure and texture. To this end, a two-stage rolling process under decreasing temperature conditions is proposed to obtain thin Mg alloy sheets with satisfied surface quality and excellent mechanical properties. The results demonstrated that after two-stage rolling, the thin sheets show satisfied surface quality, basically without edge cracks. The grain structure of the Mg sheets with thicknesses of 1.0, 0.6, 0.3, and 0.1 mm is homogeneous and significantly refined, with the smallest average grain size being approximately 5.3 μm. The 1.0-mm thin sheet exhibits a bimodal texture that transforms into a conventional (0001) basal texture as the rolling process proceeds. This is due to the low deformation temperature during warm rolling, which makes it difficult to activate non-basal slip, and thus, basal slip dominates deformation. Furthermore, based on the effect of inhomogeneous texture components and different Schmid factors in varying directions, all thin sheets show anisotropy in mechanical properties. The 0.6-mm thin sheet indicates a good combination of superior strength and medium ductility, which can be attributed to the combined effect of grain refinement and dislocation strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.F. Song, J. Chen, X.M. **ong, X.D. Peng, D.L. Chen, and F.S. Pan, Research Advances of Magnesium and Magnesium Alloys Worldwide in 2021, J. Magnes. Alloys, 2022, 10(4), p 863–898.

    Article  CAS  Google Scholar 

  2. J.L. Zhang, L.W. Lu, B. Che, M. Ma, Z.Q. Wu, T. Zhou, H. Zhang, and F.G. Qi, Effects of Rolling-Cryogenic Process on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets, J. Mater. Eng. Perform., 2023, 32, p 6448–6464.

    Article  CAS  Google Scholar 

  3. Y.D. Fan, K.K. Deng, C.J. Wang, K.B. Nie, and Q.X. Shi, Work Hardening and Softening Behavior of Mg–Zn–Ca Alloy Influenced by Deformable Ti Particles, Mater. Sci. Eng. A, 2022, 2022(833), p 142336.

    Article  Google Scholar 

  4. S.V.S. Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, and S. Singh, The Role and Significance of Magnesium in Modern Day Research-A Review, J. Magnes. Alloys, 2022, 10(1), p 1–61.

    Article  CAS  Google Scholar 

  5. M.Z. Bian, T.T. Sasaki, T. Nakata, Y. Yoshida, N. Kawabe, S. Kamado, and K. Hono, Bake-Hardenable Mg–Al–Zn–Mn–Ca Sheet Alloy Processed by Twin-Roll Casting, Acta Mater., 2018, 158, p 278–288.

    Article  CAS  Google Scholar 

  6. C.H. Li, H. Hou, R.F. Dong, X.Y. Zhang, X.L. Xu, and Y.H. Zhao, Recrystallization Behavior and Mechanical Properties of AZ31B Alloy During the Hot-Rolling Process, J. Mater. Res. Technol., 2023, 24, p 1005–1014.

    Article  CAS  Google Scholar 

  7. H.Y. Ning, Y.D. Yu, K. Lin, L.H. Wen, and C.X. Liu, Superplastic Properties of AZ31 and AZ31-1.0Y-1.3Sr Alloy Produced by Twin-Roll Casting and Sequential Hot Rolling, J. Mater. Eng. Perform., 2016, 25, p 635–641.

    Article  CAS  Google Scholar 

  8. Y. Li, P.J. Hou, Z.G. Wu, Z.L. Feng, Y. Ren, and H. Choo, Dynamic Recrystallization of a Wrought Magnesium Alloy: Grain Size and Texture Maps and Their Application for Mechanical Behavior Predictions, Mater. Des., 2021, 202, p 109562.

    Article  CAS  Google Scholar 

  9. H.C. Pan, R.S. Cheng, S. Du, H.B. **e, L. Wu, Z.Y. Deng, C.L. Yang, L.F. Ma, and G.W. Qin, Achieving High Strength in Micro-Alloyed Mg–Al–Ca–Zn–Mn–Ce Alloy Sheet Processed by Single-Pass Large-Strain Rolling, J. Mater. Eng. Perform., 2020, 29, p 7115–7124.

    Article  CAS  Google Scholar 

  10. M.Z. Bian, X.S. Huang, and Y. Chino, Substantial Improvement in Cold Formability of Concentrated Mg–Al–Zn–Ca Alloy Sheets by High Temperature Final Rolling, Acta Mater., 2021, 220, p 117328.

    Article  CAS  Google Scholar 

  11. Q. Liu, Y. Liu, Q. Luo, J.F. Song, B.Q. **ao, B. Jiang, L.Y. Wu, H. Zhao, Q.Y. Shen, and F.S. Pan, Ameliorating the Edge Cracking Behavior of Mg–Mn–Al Alloy Sheets Prepared by Multi-pass Online Heating Rolling, J. Manuf. Process., 2023, 85, p 977–986.

    Article  Google Scholar 

  12. Z. Wang, M. Mamatzunun, Y.H. Wu, Y.J. Wu, C.J. Bian, and R. Zhu, Influence of Rolling Temperature on the Mechanical Properties and Microstructure of Variable-Plane-Rolled Mg–3Al–1Zn Alloy, J. Mater. Eng. Perform., 2019, 28, p 1772–1779.

    Article  CAS  Google Scholar 

  13. Q.H. Chen, R.N. Chen, J. Su, Q.S. He, B. Tan, C. Xu, X. Huang, Q.W. Dai, and J. Lu, The Mechanisms of Grain Growth of Mg Alloys: A Review, J. Magnes. Alloys, 2022, 10(9), p 2384–2397.

    Article  CAS  Google Scholar 

  14. K.B. Nie, X.J. Wang, K.K. Deng, F.J. Xu, K. Wu, and M.Y. Zheng, Microstructures and Mechanical Properties of AZ91 Magnesium Alloy Processed by Multidirectional Forging under Decreasing Temperature Conditions, J. Alloys Compd., 2014, 617, p 979–987.

    Article  CAS  Google Scholar 

  15. C. Cui, J. He, W.K. Wang, W.Z. Chen, and W.C. Zhang, Microstructure, Texture and Mechanical Properties of Extruded AZ31 Mg Alloy During Small Strain Multi-directional Forging with Gradient Cooling, J. Alloys Compd., 2022, 909, p 164795.

    Article  CAS  Google Scholar 

  16. L.B. Tong, J.H. Chu, W.T. Sun, C. Xu, D.N. Zou, K.S. Wang, S. Kamado, and M.Y. Zheng, Achieving an Ultra-High Strength and Moderate Ductility in Mg–Gd–Y–Zn–Zr Alloy Via a Decreased-Temperature Multi-Directional Forging, Mater Charact, 2021, 171, p 110804.

    Article  CAS  Google Scholar 

  17. D.F. Zhang, Q.W. Dai, L. Fang, and X.X. Xu, Prediction of Edge Cracks and Plastic-Damage Analysis of Mg Alloy Sheet in Rolling, Trans. Nonferrous Metals Soc. China, 2011, 21(5), p 1112–1117.

    Article  CAS  Google Scholar 

  18. C.C. Zhi, L.F. Ma, Q.X. Huang, Z.Q. Huang, and J.B. Lin, Improvement of Magnesium Alloy Edge Cracks by Multi-cross Rolling, J. Mater. Process. Technol., 2018, 255, p 333–339.

    Article  CAS  Google Scholar 

  19. B.B. Dong, Z.M. Zhang, J.M. Yu, X. Che, M. Meng, and J.L. Zhang, Microstructure, Texture Evolution and Mechanical Properties of Multi-directional Forged Mg–13Gd–4Y–2Zn–0.5Zr Alloy under Decreasing Temperature, J. Alloys Compd., 2020, 823, p 153776.

    Article  CAS  Google Scholar 

  20. F. Guo, D.F. Zhang, X.S. Yang, L.Y. Jiang, S.S. Chai, and F.S. Pan, Influence of Rolling Speed on Microstructure and Mechanical Properties of AZ31 Mg Alloy Rolled by Large Strain Hot Rolling, Mater. Sci. Eng. A, 2014, 607, p 383–389.

    Article  CAS  Google Scholar 

  21. J.W. Cha and S.H. Park, Variations in Dynamic Recrystallization Behavior and Mechanical Properties of AZ31 Alloy with Extrusion Temperature, J. Magnes. Alloys, 2023, 11(7), p 2351–2365.

    Article  CAS  Google Scholar 

  22. Z. Zhang, J.H. Zhang, J.S. ** a Low-Alloyed Fine-Grained Mg Alloy with High Strength-Ductility Based on Dislocation Evolution and Grain Boundary Segregation, Scr. Mater., 2022, 209, p 114–414.

    Article  Google Scholar 

  23. R. Ma, Y.Q. Zhao, and Y.N. Wang, Grain Refinement and Mechanical Properties Improvement of AZ31 Mg Alloy Sheet Obtained by Two - Stage Rolling, Mater. Sci. Eng. A, 2017, 691, p 81–87.

    Article  CAS  Google Scholar 

  24. F. Guo, D.F. Zhang, X.S. Yang, L.Y. Jiang, and F.S. Pan, Influence of Rolling Speed on Microstructure and Mechanical Properties of AZ31 Mg Alloy Rolled by Large Strain Hot Rolling, Mater. Sci. Eng. A, 2014, 607, p 383–389.

    Article  CAS  Google Scholar 

  25. H. Zhang, W.L. Cheng, J.F. Fan, B.S. Xu, and H.B. Dong, Improved Mechanical Properties of AZ31 Magnesium Alloy Sheets by Repeated Cold Rolling and Annealing Using a Small Pass Reduction, Mater. Sci. Eng. A, 2015, 637, p 243–250.

    Article  CAS  Google Scholar 

  26. T. Zhou, Z. Yang, D. Hu, T. Feng, M.B. Yang, and X.B. Zhai, Effect of the Final Rolling Speeds on the Stretch Formability of AZ31 Alloy Sheet Rolled at a High Temperature, J. Alloys Compd., 2015, 650, p 436–443.

    Article  CAS  Google Scholar 

  27. J.R. Dong, D.F. Zhang, Y.F. Dong, S.S. Chai, and F.S. Pan, Microstructure Evolution and Mechanical Response of Extruded AZ31B Magnesium Alloy Sheet at Large Strains Followed by Annealing Treatment, Mater. Sci. Eng. A, 2014, 618, p 262–270.

    Article  CAS  Google Scholar 

  28. F.S. Pan, Q.H. Wang, B. Jiang, J.J. He, Y.F. Chai, and J. Xu, An Effective Approach Called the Composite Extrusion to Improve the Mechanical Properties of AZ31 Magnesium Alloy Sheets, Mater. Sci. Eng. A, 2016, 655, p 339–345.

    Article  CAS  Google Scholar 

  29. C.J. Wang, J.W. Kang, K.K. Deng, K.B. Nie, W. Liang, and W.G. Li, Microstructure and Mechanical Properties of Mg-4Zn-xGd (x=0, 05, 1, 2) Alloys, J. Magnes. Alloys, 2022, 8(2), p 441–451.

    Article  Google Scholar 

  30. J. Suh, J. Victoria-Hernández, D. Letzig, R. Golle, and W. Volk, Enhanced Mechanical Behavior and Reduced Mechanical Anisotropy of AZ31 Mg Alloy Sheet Processed by ECAP, Mater. Sci. Eng. A, 2016, 650, p 523–529.

    Article  CAS  Google Scholar 

  31. J. Suh, J. Victoria-Hernandez, D. Letzig, R. Golle, S. Yi, J. Bohlen, and W. Volk, Improvement in Cold Formability of AZ31 Magnesium Alloy Sheets Processed by Equal Channel Angular Pressing, J. Mater. Process. Technol., 2015, 217, p 286–293.

    Article  CAS  Google Scholar 

  32. M. Rakshith and P. Seenuvasaperumal, Review on the Effect of Different Processing Techniques on the Microstructure and Mechanical Behaviour of AZ31 Magnesium Alloy, J. Magnes. Alloys, 2021, 9(5), p 1692–1714.

    Article  Google Scholar 

  33. H. Huang and J. Zhang, Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Processed by Multi-directional Forging at Different Temperatures, Mater. Sci. Eng. A, 2016, 674, p 52–58.

    Article  CAS  Google Scholar 

  34. L.L. Guo, R. Fu, J.Y. Pei, J.Q. Wang, H.Y. Zhao, B.Y. Song, and Z.C. Chen, Microstructure, Texture, and Mechanical Properties of Continuously Extruded and Rolled AZ31 Magnesium Alloy Sheets, J. Mater. Eng. Perform., 2019, 28, p 6692–6703.

    Article  CAS  Google Scholar 

  35. Q.H. Wang, H.W. Zhai, S. Chen, and L. Wang, Simultaneous Enhancement of Strength and Ductility in Friction Stir Welded AZ31 Alloy Via Multi-pass Hot-Rolling and Subsequent Annealing, J. Mater. Res. Technol., 2023, 23(6), p 5181–5192.

    Article  CAS  Google Scholar 

  36. W.L. Xu, X.H. Chen, and F.S. Pan, Effect of Y Content on the Microstructure and Mechanical Anisotropy of Mg-6Zn-xY-0.5Ce-0.4Zr Alloy Subjected to Asymmetric Rolling, Mater. Sci. Eng. A, 2023, 882, p 145465.

    Article  CAS  Google Scholar 

  37. X. Zeng, C.L. Liu, C.Y. Zhao, J. Dong, F. Roters, and D.K. Guan, Three-Dimensional Study of Grain Scale Tensile Twinning Activity in Magnesium: A Combination of Microstructure Characterization and Mechanical Modeling, Acta Mater., 2023, 255, p 119043.

    Article  CAS  Google Scholar 

  38. D.K. Guan, W. Mark Rainforth, J.H. Gao, L. Ma, and B. Wynne, Individual Effect of Recrystallisation Nucleation Sites on Texture Weakening in a Magnesium Alloy: Part 2- Shear Bands, Acta Mater., 2018, 145, p 399–412.

    Article  CAS  Google Scholar 

  39. Q.X. Shi, C.J. Wang, K.K. Deng, K.B. Nie, Y.C. Wu, W.M. Gan, and W. Liang, Microstructure and Mechanical Behavior of Mg-5Zn Matrix Influenced by Particle Deformation Zone, J. Mater. Sci. Technol., 2021, 60, p 8–20.

    Article  CAS  Google Scholar 

  40. H. Somekawa, N. Motohashi, S. Kuroda, and T. Mandai, Mechanical and Functional Properties of Ultra-Thin Mg Foils, Mater. Sci. Eng. A, 2023, 872, p 144934.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports from the National Natural Science Foundation of China, China (No. 51901144), the Anhui Provincial Natural Science Foundation, China (No. 2108085QE185), and the University Natural Science Research Project of Anhui Province (No. 2022AH050316).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li** Zhong or Pengyan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Sun, L., Zhang, M. et al. Microstructure, Texture Evolution, and Mechanical Properties of Thin AZ31B Mg Alloy Sheets Prepared by Two-Stage Rolling. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09371-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09371-0

Keywords

Navigation