Log in

Effects of Rolling-Cryogenic Process on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to improve the microstructure of AZ31 magnesium alloy sheets and enhance their comprehensive mechanical properties, the effects of cryogenic treatment on the microstructure and mechanical properties after hot-rolled AZ31 magnesium alloy were investigated in this paper by combining different rolling reduction with cryogenic treatment. The results show that fine dynamic recrystallization grains appear at the original grain boundaries, and the grain becomes fine and uniform after rolling and deformation. After cryogenic treatment of the hot-rolled sheets, the grains are further significantly refined, the size tends to be homogeneous, the second phase is precipitated along the grain boundaries, and a small amount of twins are produced. In addition, after 20-min cryogenic treatment, the plasticity of the rolled sheets with 30% reduction was greatly improved, and the elongation at break was up to 14.2%, which was 55% higher than that of the original sheet; its hardness and tensile strength were increased from 64.4 HV and 230 MPa of the original sheet to 76.6 HV and 286 MPa, respectively, which shows that the cryogenic treatment of the hot-rolled sheets could effectively improve mechanical properties. This study provides some theoretical guidance and technical support for the processing and manufacturing of high-performance AZ31 magnesium alloy sheets, which has important academic significance and engineering value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Wang, S.J. Liu, R.Z. Wu, S. Zhang, Y. Wang, H.J. Wu, J.H. Zhang and L.G. Hou, Synergistically Improved Dam**, Elastic Modulus and Mechanical Properties of Rolled Mg-8Li-4Y-2Er-2Zn-0 6Zr Alloy with Twins and Long-Period Stacking Ordered Phase, J. Alloys. Compd., 2021, 881, p 160663.

    CAS  Google Scholar 

  2. B. Che, L.W. Lu, Z.Q. Wu, H. Zhang, M. Ma, J. Luo, and H.M. Zhao, Dynamic Recrystallization Behavior and Microstructure Evolution of a New Mg-6Zn-1Gd-1Er Alloy with and Without Pre-Aging Treatment, Mater. Charact., 2021, 181, p 111506.

    CAS  Google Scholar 

  3. B. Che, L.L. Lu, W. Kang, J. Luo, M. Ma, and L.F. Liu, Hot Deformation Behavior and Processing Map of a New Type Mg-6Zn-1Gd-1Er Alloy, J. Alloy. Compd., 2021, 862, p 158700.

    CAS  Google Scholar 

  4. X.Y. Liu, L.W. Lu, K. Sheng, and T. Zhou, Microstructure and Texture Evolution during the Direct Extrusion and Bending-Shear Deformation of AZ31 Magnesium Alloy, Acta. Metall. Sin-Engl., 2019, 32, p 710–718.

    CAS  Google Scholar 

  5. K. Sheng, L.W. Lu, Y. **ang, M. Ma, and Z.Q. Wu, Crack Behavior in Mg/Al Alloy Thin Sheet during Hot Compound Extrusion, J. Magnes. Alloy., 2019, 7(4), p 717–724.

    CAS  Google Scholar 

  6. Y.C. **n, M.Y. Wang, Z. Zeng, G.J. Huang, and Q. Liu, Tailoring the Texture of Magnesium Alloy by Twinning Deformation to Improve the Rolling Capability, Scripta Mater., 2011, 64(10), p 986–989.

    CAS  Google Scholar 

  7. W. Kang, L.L. Lu, L.B. Feng, F.C. Lu, C.L. Gan, and X.H. Li, Effects of Pre-Aging on Microstructure Evolution and Deformation Mechanisms of Hot Extruded Mg-6Zn-1Gd-1Er Mg Alloys, J. Magnes. Alloy., 2021 https://doi.org/10.1016/j.jma.2021.05.019

    Article  Google Scholar 

  8. J.H. Lee, J.U. Lee, S.H. Kim, S.W. Song, C.S. Lee, and S.H. Park, Dynamic Recrystallization Behavior and Microstructural Evolution of Mg Alloy AZ31 through High-Speed Rolling, J. Mater. Sci. Technol., 2018, 34(10), p 1747–1755.

    CAS  Google Scholar 

  9. S.H. Zhang, L. Deng, W.H. Tian, L.Z. Che, and Y. Li, Deduction of a Quadratic Velocity Field and its Application to Rolling Force of Extra-Thick Plate, Comput. Math. Appl., 2022, 109, p 58–73.

    Google Scholar 

  10. B.L. Mordike and T. Ebert, Magnesium: Properties-Applications-Potential, Mater. Sci. Eng. A., 2001, 302(1), p 37–45.

    Google Scholar 

  11. J.L. Wu, L. **, J. Dong, F.H. Wang, and S. Dong, The Texture and its Optimization in Magnesium Alloy, J. Mater. Sci. Technol., 2020, 42, p 175-189.

    CAS  Google Scholar 

  12. V.V. Sagaradze, V.A. Shabashov, N.V. Kataeva, K.A. Kozlov, A.R. Kuznetsov, and A.V. Litvinov, The Anomalous Diffusion Processes “Dissolution-Precipitation” of THE γ′ Phase Ni3Al in AN Fe-Ni-Al Alloy during Low-Temperature Deformation, Mater. Lett., 2016, 172, p 207-210.

    CAS  Google Scholar 

  13. A. Aletdinov, S. Mironov, G. Korznikova, T. Konkova, R. Zaripova, M. Myshlyaev, and S.L. Semiatin, EBSD Investigation of Microstructure Evolution during Cryogenic Rolling of Type 321 Metastable Austenitic Steel, Mater. Sci. Eng. A., 2019, 745(4), p 460–473.

    CAS  Google Scholar 

  14. B. Fu, L.M. Fu, S.C. Liu, H.R. Wang, W. Wang, and A. Shan, High Strength-Ductility Nano-Structured High Manganese Steel Produced by Cryogenic Asymmetry-Rolling, J. Mater. Sci. Technol., 2018, 34(4), p 695–699.

    CAS  Google Scholar 

  15. Z.Q. Huang, J.C. Wei, Q.X. Huang, L.F. Ma, X.Y. Gao, and Z.H. Yue, Effect of Cryogenic Treatment Prior to Rolling on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy, Rare. Metal. Mat. Eng., 2018, 47(10), p 2942–2948.

    CAS  Google Scholar 

  16. N.N. Dong, L.X. Sun, H.B. Ma, and P.P. **, Effects of Cryogenic Treatment on Microstructures and Mechanical Properties of Mg-2Nd-4Zn Alloy, Mater. Lett., 2021, 305, p 130699.

    CAS  Google Scholar 

  17. K. Zhang and Z.T. Shao, A Comparative Study of Plastic Deformation Mechanisms in Room-Temperature and Cryogenically Deformed Magnesium Alloy AZ31, Mater. Sci. Eng. A., 2021, 807, p 140821.

    CAS  Google Scholar 

  18. S.W. Lee, S.H. Kim, and S.H. Park, Microstructural Characteristics of AZ31 Alloys Rolled at Room and Cryogenic Temperatures and their Variation during Annealing, J. Magnes. Alloy., 2020, 8(2), p 537–545.

    CAS  Google Scholar 

  19. M. Preciado, M.B. Pedro, and C. David, Deep Cryogenic Treatment of HPDC AZ91 Magnesium Alloys Prior to Aging and its Influence on Alloy Microstructure and Mechanical Properties, J. Mater. Process. Tech., 2017, 239, p 297–302.

    Google Scholar 

  20. J.H. Peng, Z. Zhang, J. Huang, P. Guo, W. Zhou, and Y.C. Wu, The Effect of Grain Size on Texture Evolution and Mechanical Properties of an AZ31 Magnesium Alloy during Cold-Rolling Process, J. Alloy. Compd., 2020, 817, p 153302.

    CAS  Google Scholar 

  21. Y. Jiang, D. Chen, Z.H. Chen, and J.W. Liu, Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy, Mater. Manuf. Process., 2010, 25(8), p 837–841.

    CAS  Google Scholar 

  22. K.M. Asl, A. Tari, and F. Khomamizadeh, Effect of Deep Cryogenic Treatment on Microstructure, Creep and Wear Behaviors of AZ91 Magnesium Alloy, Mater. Sci. Eng. A., 2009, 523(1), p 27–31.

    Google Scholar 

  23. Y. Liu, S. Shao, C.S. Xu, and D.P. Lu, Enhancing Wear Resistance of Mg-Zn-Gd Alloy by Cryogenic Treatment, Mater. Lett., 2012, 76(1), p 201–204.

    CAS  Google Scholar 

  24. J.W. Liu, G.F. Li, D. Chen, and Z.H. Chen, Effect of Cryogenic Treatment on Deformation Behavior of as-Cast AZ91 mg Alloy, Chin. J. Aeronaut., 2012, 25(6), p 931–936.

    CAS  Google Scholar 

  25. X.Y. Xu, Y.F. Wang, H.Y. Wang, T. Wang, M. Zha, Z.M. Hua, C. Wang, and Q.C. Jiang, Influences of Pre-Existing Mg17Al12 Particles on Static Recrystallization Behavior of Mg-Al-Zn Alloys at different annealing temperatures, J. Alloy. Compd., 2019, 787, p 1104–1109.

    CAS  Google Scholar 

  26. K. Amini, A. Akhbarizadeh, and S. Javadpour, Investigating the Effect of Quench Environment and Deep Cryogenic Treatment on the Wear Behavior of AZ91, Mater. Design., 2014, 54, p 154–160.

    CAS  Google Scholar 

  27. K.X. Gu, H. Zhang, B. Zhao, J.W. Wang, Y. Zhou, and Z.Q. Li, Effect of Cryogenic Treatment and Aging Treatment on the Tensile Properties and Microstructure of Ti-6Al-4V Alloy, Mater. Sci. Eng. A., 2013, 584(1), p 170–176.

    CAS  Google Scholar 

  28. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, and J.F. Nie, Texture Evolution during Static Recrystallization of Cold-Rolled Magnesium Alloys, Acta. Mater., 2016, 105(15), p 479–494.

    CAS  Google Scholar 

  29. M.J. Starink, X.Y. Cheng, and S.F. Yang, Hardening of Pure Metals by High-Pressure Torsion: A Physically Based Model Employing Volume-Averaged Defect Evolutions, Acta Mater., 2013, 61(1), p 183–192.

    CAS  Google Scholar 

  30. H.C. Pan, R. Kang, J.R. Li, H.B. **e, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, and G.W. Qin, Mechanistic Investigation of a Low-Alloy Mg-Ca-Based Extrusion Alloy with High Strength-Ductility Synergy, Acta Mater., 2020, 186, p 278–290.

    CAS  Google Scholar 

  31. H.H. Yu, C.Z. Li, Y.C. **n, A. Chapuis, X.X. Huang, and Q. Liu, The Mechanism for the High Dependence of the Hall-Petch Slope for Twinning/Slip on Texture in Mg Alloys, Acta. Mater., 2017, 128, p 313–326.

    CAS  Google Scholar 

  32. Y. Wang and H. Choo, Influence of Texture on Hall-Petch Relationships in an Mg Alloy, Acta. Mater., 2014, 81, p 83–97.

    CAS  Google Scholar 

  33. P. Peng, A.T. Tang, J. She, S.B. Zhou, and F.S. Pan, Ultrafine Grained Magnesium Alloys Research: Status Quo and Future Directions, Mater. Rep., 2019, 33(9), p 1526–1534.

    Google Scholar 

  34. D. Zhao, X.H. Chen, J.B. Li, J. Tan, and F.S. Pan, Microstructure, Texture and Mechanical Properties of the Rolled High Modulus Mg-Y-Zn-Al-Li Alloy, Mater. Sci. Eng. A., 2022, 831, p 142242.

    CAS  Google Scholar 

  35. Y. Liu, S. Shao, C.S. Xu, X.S. Zeng, and X.J. Yang, Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of Mg-1.5Zn-0.15Gd Magnesium Alloy, Mater. Sci. Eng. A., 2013, 588(20), p 76–81.

    CAS  Google Scholar 

  36. B. Che, L.W. Lu, J.L. Zhang, J.H. Zhang, M. Ma, L.F. Wang, and F.G. Qi, Effects of Cryogenic Treatment on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Rolled at Different Paths, Mater. Sci. Eng. A., 2022, 832, p 142475.

    CAS  Google Scholar 

  37. Z.Q. Yang, A.B. Ma, H. Liu, D. Song, Y.N. Wu, Y.C. Yuan, J.H. Jiang, and J.P. Sun, Managing Strength and Ductility in AZ91 Magnesium Alloy through ECAP Combined with Prior and Post Aging Treatment, Mater. Char., 2019, 15, p 213–222.

    Google Scholar 

  38. M. Wang, X.Y. Xu, H.Y. Wang, L.H. He, and M.X. Huang, Evolution of Dislocation and Twin Densities in a Mg alloy at Quasi-Static and High Strain Rates, Acta. Mater., 2020, 201, p 102–113.

    CAS  Google Scholar 

  39. X.Q. Li, Q.C. Le, D.D. Li, P. Wang, P.P. **, C.L. Cheng, X.R. Chen, and L. Ren, Hot Tensile Deformation Behavior of Extruded LAZ532 Alloy with Heterostructure, Mater. Sci. Eng. A., 2021, 801(13), p 140412.

    CAS  Google Scholar 

  40. S. Ganguly, S.T. Reddy, J. Majhi, P. Nasker, and A.K. Mondal, Enhancing Mechanical Properties of Squeeze-Cast AZ91 Magnesium Alloy by Combined Additions of Sb and SiC Nanoparticles, Mater. Sci. Eng. A., 2021, 799(2), p 140341.

    CAS  Google Scholar 

  41. Q.H. Wang, B. Jiang, A.T. Tang, C. He, D.F. Zhang, J.F. Song, T.H. Yang, G.S. Huang, and F.S. Pan, Formation of the Elliptical Texture and its Effect on the Mechanical Properties and Stretch Formability of Dilute Mg-Sn-Y Sheet by Zn Addition, Mater. Sci. Eng. A., 2019, 746(11), p 259-275.

    CAS  Google Scholar 

  42. T.S. Zhou, Z.H. Liu, D.L. Yang, S.J. Meng, Z. Jia, and D.X. Liu, High Ductility in Solution-Treated Mg-Sc-Yb-Mn-Zr Alloy Mediated by <c+a> Dislocations, J. Alloys. Compd., 2021, 873, p 159880.

    CAS  Google Scholar 

  43. K. Zhang, J.H. Zheng, C. Hopper, C.Y. Sun, and J. Jiang, Enhanced Plasticity at Cryogenic Temperature in a Magnesium Alloy, Mater. Sci. Eng. A., 2021, 811(15), p 141001.

    CAS  Google Scholar 

  44. Y.K. Pan, J.T. Wang, H.W. Cui, R. Feng, B.K. Gong, X.C. Zhao, N. Hou, B.R. Cui, Y.R. Song, and T. Yang, Effect of Deep Cryogenic Treatment on the Microstructure and Corrosion Behavior of the Microarc Oxidized Mg-2.0Zn-0.5Ca Alloy, J. Mater. Res. Technol., 2020, 9(3), p 3943–3949.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 52174362 and 51975207) and Hunan Provincial Natural Science Foundation of China (Grant no. 2020JJ5181).

Author information

Authors and Affiliations

Authors

Contributions

Jialong Zhang was involved in the methodology, investigation, experiments and writing original draft. Liwei Lu contributed to the investigation, supervision and experiments. Bo Che was involved in the review, collection of data and experiments. Min Ma contributed to the methodology, investigation and review. Zhiqiang Wu was involved in the supervision and formal analysis. Tao Zhou helped in the methodology and supervision. Hua Zhang was involved in the supervision and formal analysis. Fugang Qi contributed to the conceptualization and investigation.

Corresponding author

Correspondence to Liwei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lu, L., Che, B. et al. Effects of Rolling-Cryogenic Process on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheets. J. of Materi Eng and Perform 32, 6448–6464 (2023). https://doi.org/10.1007/s11665-022-07559-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07559-w

Keywords

Navigation