Log in

Improvement of Oxidation Resistance in Tungsten Heavy Alloys through Si, Y2O3, Ni, and Co Addition

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Self-passivating tungsten heavy alloys are important due to their high melting point, strong mechanical properties, and good oxidation resistance. Powder metallurgy is a key process in the preparation of these alloys, where it allows for precise control over composition and the inclusion of alloying elements. In the present study, we aim to evaluate the effect of alloying elements on the oxidation resistance of W-1Si-0.3Y2O3, W-10Ni-3Co-0.3Y2O3 and W-10Ni-3Co-1Si-0.3Y2O3 alloys fabricated by mechanical alloying followed by conventional pressureless sintering. The isothermal oxidation behaviour of synthesized alloys was conducted at 800, 1000 and 1200 °C up to 10 h to study oxide growth kinetics, phase and microstructure evolution. The addition of 1 wt.% Si into tungsten produces fine SiO2 particles on tungsten oxide grain boundaries during oxidation, which effectively prevents WO3 grain growth and crack propagation. However, low Si content results in a lack of continuous oxide layer, leading to WO3 volatilization. In contrast, alloys W-10Ni-1Si-0.3Y2O3 and W-10Ni-3Co-1Si-0.3Y2O3 exhibit enhanced oxidation resistance due to the formation of a dense NiWO4/CoWO4 layer beneath the porous WO3 + SiO2 layer. The resistance of tungsten to oxidation was significantly increased through the addition of Si, Y2O3, Ni and Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Patra, R. Saxena, S.K. Karak, T. Laha, and S.K. Sahoo, Fabrication and Characterization of Nano-Y2O3 Dispersed W-Ni-Mo and W-Ni-Ti-Nb Alloys by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 707, p 245–250. https://doi.org/10.1016/j.jallcom.2016.11.424

    Article  CAS  Google Scholar 

  2. R. Saxena, A. Patra, S.K. Karak, and L. Ciupinski, Fabrication and Characterization of Nano-Y2O3 Dispersed W-Ni-Nb Alloys, Int. J. Refract. Met. Hard Mater., 2018, 71, p 70–81. https://doi.org/10.1016/j.ijrmhm.2017.11.004

    Article  CAS  Google Scholar 

  3. C.L. Chen and S.H. Ma, Study on Characteristics and Sintering Behavior of W-Ni-Co Tungsten Heavy Alloy by A Secondary Ball Milling Method, J. Alloys Compd., 2018, 731, p 78–83. https://doi.org/10.1016/j.jallcom.2017.09.125

    Article  CAS  Google Scholar 

  4. C.-L. Chen, Y. Zeng, and J.-G. Lee, Microstructure Evolution of Tungsten-Based ODS Alloys Reinforced with the γ(Ni,~Fe) Phase by a Secondary Ball Milling Method, Acta Physica Polonica A, 2014, 126(4), p 907–911. https://doi.org/10.12693/APhysPolA.126.907

    Article  CAS  Google Scholar 

  5. E. Lassner and W.-D. Schubert, Tungsten Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Kluwer Academic Plenum Publishers, Austria, 2005.

    Google Scholar 

  6. S. Segantin, S. Meschini, R. Testoni and M. Zucchetti, Preliminary Investigation of Neutron Shielding Compounds for ARC-Class Tokamaks, Fusion Eng. Des., 2022, 185, p 113335. https://doi.org/10.1016/j.fusengdes.2022.113335

    Article  CAS  Google Scholar 

  7. C. Cheng, Y. Fu, C. Du, Z. Du, Z. Jiang, F. Zhou, K. Zhong, and X. Wang, Experimental and Numerical Study of Tantalum-Tungsten Alloy Rod Penetrator Impacting Thick Armor Plate, Int. J. Refract. Met. Hard Mater., 2022, 107, p 105873. https://doi.org/10.1016/j.ijrmhm.2022.105873

    Article  CAS  Google Scholar 

  8. X. Chen, B.E. Schuster, L.J. Kecskes, and Q. Wei, Ballistic Performance of Tungsten-Based Heterogeneous Multilayer Structures, J. Dyn. Behav. Mater., 2022, 8, p 89–103. https://doi.org/10.1007/s40870-021-00319-2

    Article  Google Scholar 

  9. L. Zhang, X. Chen, Y. Huang, W. Liu, and Y. Ma, Microstructural Characteristics and Evolution Mechanisms of 90W–Ni–Fe Alloy under High-Strain-Rate Deformation, Mater. Sci. Eng. A., 2021, 811, p 141070. https://doi.org/10.1016/j.msea.2021.141070

    Article  CAS  Google Scholar 

  10. C.L. Chen and S.H. Ma, Effects of Ni/Co Ratio and Mechanical Alloying on Characteristics and Sintering Behavior of W-Ni-Co Tungsten Heavy Alloys, J. Alloys Compd., 2017, 711, p 488–494. https://doi.org/10.1016/j.jallcom.2017.04.037

    Article  CAS  Google Scholar 

  11. Z.A. Hamid, S.F. Moustafa, W.M. Daoush, F.A. Mouez, and M. Hassan, Fabrication and Characterization of Tungsten Heavy Alloys Using Chemical Reduction and Mechanical Alloying Methods, Open, J. Appl. Sci., 2013, 03, p 15–27. https://doi.org/10.4236/ojapps.2013.31003

    Article  CAS  Google Scholar 

  12. G. Prabhu, R. Arockia Kumar, and T.K. Nandy, Effect of Yttrium Oxide Dispersion on The Microstructure and Properties of Tungsten Heavy Alloys, Def. Sci. J., 2018, 68, p 406–411. https://doi.org/10.14429/dsj.68.12255

    Article  CAS  Google Scholar 

  13. Y. Liu, X. Li, J. Zhou, K. Fu, W. Wei, M. Du, and X. Zhao, Effects of Y2O3 Addition on Microstructures and Mechanical Properties of WC-Co Functionally Graded Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2015, 50, p 53–58. https://doi.org/10.1016/j.ijrmhm.2014.11.004

    Article  CAS  Google Scholar 

  14. S. Telu, R. Mitra, and S.K. Pabi, Effect of Y2O3 Addition on Oxidation Behavior of W-Cr Alloys, Metall Mater. Trans. A Phys. Metall. Mater. Sci., 2015, 46, p 5909–5919. https://doi.org/10.1007/s11661-015-3166-z

    Article  CAS  Google Scholar 

  15. A. Patra, R. Saxena, and S.K. Karak, Combined Effect of Ni and Nano-Y2O3 Addition on Microstructure, Mechanical and High Temperature Behavior of Mechanically Alloyed W-Mo, Int. J. Refract. Met. Hard Mater., 2016, 60, p 131–146. https://doi.org/10.1016/j.ijrmhm.2016.07.017

    Article  CAS  Google Scholar 

  16. A. Patra, R.R. Sahoo, S.K. Karak, and S.K. Sahoo, Effect of nano Y2O3 Dispersion on Thermal, Microstructure, Mechanical and High Temperature Oxidation Behavior of Mechanically Alloyed W-Ni-Mo-Ti, Int. J. Refract. Met. Hard Mater., 2018, 70, p 134–154. https://doi.org/10.1016/j.ijrmhm.2017.09.015

    Article  CAS  Google Scholar 

  17. A. Hedayat, H. Davilu, and J. Jafari, Loss of Coolant Accident Analyses on Tehran Research Reactor by RELAP5/MOD3.2 code, Prog. Nucl. Energy., 2007, 49, p 511–528. https://doi.org/10.1016/j.pnucene.2007.07.009

    Article  Google Scholar 

  18. T. Wegener, F. Klein, A. Litnovsky, M. Rasinski, J. Brinkmann, F. Koch, and C. Linsmeier, Development and Analyses of Self-Passivating Tungsten Alloys for DEMO Accidental Conditions, Fusion Eng. Des., 2017, 124, p 183–186. https://doi.org/10.1016/j.fusengdes.2017.03.072

    Article  CAS  Google Scholar 

  19. F. Koch, S. Köppl, and H. Bolt, Self Passivating W-Based Alloys as Plasma-Facing Material, J. Nucl. Mater., 2009, 386–388, p 572–574. https://doi.org/10.1016/j.jnucmat.2008.12.179

    Article  CAS  Google Scholar 

  20. P. López-Ruiz, F. Koch, N. Ordás, S. Lindig, and C. García-Rosales, Manufacturing of Self-Passivating W-Cr-Si Alloys by Mechanical Alloying and HIP, Fusion Eng. Des., 2011, 86, p 1719–1723. https://doi.org/10.1016/j.fusengdes.2011.03.107

    Article  CAS  Google Scholar 

  21. V. Suman, R.S. Maurya, M. Debata, and D. Chaira, Effect of Si Addition on Phase Evolution and Microstructure in Y2O3 Dispersed Tungsten (W) and W-Based Alloys Synthesized via Mechanical Alloying and Consecutive Conventional Sintering, Mater. Today Commun., 2022, 31, p 103341. https://doi.org/10.1016/j.mtcomm.2022.103341

    Article  CAS  Google Scholar 

  22. E.A. Gulbransen and K.F. Andrew, Kinetics of the Oxidation of Pure Tungsten from 500° to 1300°C, J. Electrochem. Soc., 1960, 107, p 619. https://doi.org/10.1149/1.2427787

    Article  Google Scholar 

  23. F. Koch and H. Bolt, Self Passivating W-Based Alloys as Plasma Facing Material for Nuclear Fusion, Phys. Scr. T. T, 2007, 128, p 100–105. https://doi.org/10.1088/0031-8949/2007/T128/020

    Article  CAS  Google Scholar 

  24. S. Samal, High-Temperature Oxidation of Metals, High Temp. Corros., 2016 https://doi.org/10.5772/63000

    Article  Google Scholar 

  25. F.S.P. Neil Birks and G.H. Meier, High Temperature Oxidation of metals, 2nd ed. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  26. V.D.B. Rengstorff, Oxidation of Tungsten, Columbus 1, Ohio, 1961.

  27. G. Yi, W. Liu, C. Ye, L. Xue, and Y. Yan, A self-Passivating W-Si-Y Alloy: Microstructure and Oxidation Resistance Behavior at High Temperatures, Corros. Sci., 2021, 192, p 109820. https://doi.org/10.1016/j.corsci.2021.109820

    Article  CAS  Google Scholar 

  28. P. Hartman and H.K. Chan, Revised Effective Ionic Radii and Systenatic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr. Sect. A., 1976, 32, p 1052–1058. https://doi.org/10.1023/A:1018927109487

    Article  Google Scholar 

  29. V.R. Talekar, A. Patra, and S.K. Sahoo, Oxidation Behavior of Oxide Dispersion-Strengthened W-Ni Alloys, Oxid. Met., 2020, 93, p 17–28. https://doi.org/10.1007/s11085-019-09942-w

    Article  CAS  Google Scholar 

  30. W. Liu, C. Ye, L. Xue, W. Zhang, and Y. Yan, A self-Passivating Tungsten Bulk Composite: Effects of Silicon on its Oxidation Resistance, Int. J. Refract. Met. Hard Mater., 2021, 100, p 105631. https://doi.org/10.1016/j.ijrmhm.2021.105631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. Mayadhar Debata, Principal Scientist, Council of Scientific and Industrial Research (CSIR)-Institute of Minerals and Materials Technology (IMMT) Bhubaneswar for allowing fabrication of samples by conventional sintering in H2 atmosphere for oxidation study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chaira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to the Journal of Materials Engineering and Performance selected from presentations at the 4th International Conference on Processing & Characterization of Materials (ICPCM 2022) held December 9-11, 2022, at the National Institute of Technology, Rourkela, Odisha, India. It has been expanded from the original presentation. The issue was organized by Prof. Joao Pedro Oliveira, Universidade NOVA de Lisboa, Portugal; Prof. B. Venkata Manoj Kumar, Indian Institute of Technology Roorkee, India; Dr. D. Arvindha Babu, DMRL, DRDO, Hyderabad, India; Prof. Kumud Kant Mehta and Prof. Anshuman Patra, National Institute of Technology Rourkela, Odisha, India; and Prof. Manab Mallik, National Institute of Technology Durgapur, India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suman, V., Chaira, D. Improvement of Oxidation Resistance in Tungsten Heavy Alloys through Si, Y2O3, Ni, and Co Addition. J. of Materi Eng and Perform 33, 5279–5290 (2024). https://doi.org/10.1007/s11665-023-08366-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08366-7

Keywords

Navigation