Log in

Improved High-Temperature Oxidation Properties for Mn-Containing Beta-Gamma TiAl with W Addition

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

TiAl-based alloys containing relatively high Mn (e.g., Ti–42Al–5Mn (in at.%)) possess excellent hot workability and cost-effective advantages, but may also have poor oxidation resistance at high temperature. Hence, additional attention needs to be paid on the oxidation resistance of these alloys. In this study, a Mn-containing γ-TiAl-based alloy with the composition of Ti–42Al–5Mn has been chosen, and the oxidation behavior of this alloy with different W additions under thermal cycling conditions at 800 °C was investigated. The morphology and the composition distribution of the oxide scale were analyzed by means of scanning electron microscopy equipped with energy-dispersive spectroscopy, X-ray diffractometry and X-ray photoelectron spectroscopy. Auger electron spectroscopy depth profiling was used to investigate the effect of W on the initial stage of oxidation. It shows that the addition of 1 (at.%) W can significantly reduce the oxidation mass gain, and the oxidation reaction rate constant is decreased by an order of magnitude. The adherence of oxide scale is greatly enhanced with no spallation observed in Ti–42Al–5Mn–(0.8, 1)W after 100-h cyclic oxidation. Tungsten promotes the selective oxidation of Al and formation of a denser oxide scale which prevents the inward diffusion of oxygen; in this way, high-temperature oxidation resistance of the alloy is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Clemens and W. Smarsly, Advanced Materials Research278, 551–556 (2011).

    Article  CAS  Google Scholar 

  2. M. Yamaguchi, H. Inui and K. Ito, Acta Materialia48, 307–322 (2000).

    Article  CAS  Google Scholar 

  3. Y. N. Berdovsky, Intermetallics Research Progress, (Nova Science Publishers, New York, 2008).

    Google Scholar 

  4. Y.-W. Kim and S.-L. Kim, JOM70, 553–560 (2018).

    Article  Google Scholar 

  5. S. Mayer, P. Erdely, F. D. Fischer, et al., Advanced Engineering Materials19, 1600735 (2017).

    Article  Google Scholar 

  6. H. Clemens, W. Wallgram, S. Kremmer, et al., Advanced Engineering Materials10, 707–713 (2008).

    Article  CAS  Google Scholar 

  7. T. Tetsui, K. Shindo, S. Kobayashi and M. Takeyama, Scripta Materialia47, 399–403 (2002).

    Article  CAS  Google Scholar 

  8. T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi and M. Takeyama, Intermetallics13, 971–978 (2005).

    Article  CAS  Google Scholar 

  9. H. Xu, X. B. Li, W. W. **ng, et al., Intermetallics99, 51–58 (2018).

    Article  CAS  Google Scholar 

  10. X. B. Li, H. Xu, W. W. **ng, et al., Metals8, 731 (2018).

    Article  Google Scholar 

  11. H. Xu, X. B. Li, W. W. **ng, et al., Advanced Engineering Materials20, 1701059 (2018).

    Article  Google Scholar 

  12. Y. Shida and H. Anada, Oxidation of Metals45, 197–219 (1996).

    Article  CAS  Google Scholar 

  13. S. A. Kekare and P. B. Aswath, Journal of Materials Science32, 2485–2499 (1997).

    Article  CAS  Google Scholar 

  14. R. Pflumm, S. Friedle and M. Schütze, Intermetallics56, 1–14 (2015).

    Article  CAS  Google Scholar 

  15. M. Froehlich, A. Ebach-Stahl, R. Braun and C. Leyens, Materialwissenschaft und Werkstofftechnik38, 667–673 (2007).

    Article  CAS  Google Scholar 

  16. K. Zhang, T. B. Zhang, X. H. Zhang and L. Song, Corrosion Science156, 139–146 (2019).

    Article  CAS  Google Scholar 

  17. M. Naveed, A. F. Renteria and S. Weiß, Journal of Alloys and Compounds691, 489–497 (2017).

    Article  CAS  Google Scholar 

  18. X. Gong, R. R. Chen, H. Z. Fang, et al., Corrosion Science131, 376–385 (2018).

    Article  CAS  Google Scholar 

  19. F.-P. **, Q.-M. Hu, A. V. Bakulin, S. E. Kulkova and R. Yang, Intermetallics68, 57–62 (2016).

    Article  CAS  Google Scholar 

  20. T. Izumi, T. Yoshioka, S. Hayashi and T. Narita, Intermetallics9, 547–558 (2001).

    Article  CAS  Google Scholar 

  21. J. P. Lin, L. L. Zhao, G. Y. Li, et al., Intermetallics19, 131–136 (2011).

    Article  CAS  Google Scholar 

  22. R. Pflumm, A. Donchev, S. Mayer, H. Clemens and M. Schütze, Intermetallics53, 45–55 (2014).

    Article  CAS  Google Scholar 

  23. Y. Shida and H. Anada, Corrosion Science35, 945–953 (1993).

    Article  CAS  Google Scholar 

  24. J. W. Fergus, Materials Science and Engineering: A338, 108–125 (2002).

    Article  Google Scholar 

  25. C. Lang and M. Schutze, Oxidation of Metals46, 255–285 (1996).

    Article  CAS  Google Scholar 

  26. T. K. Roy, R. Balasubramaniam and A. Ghosh, Metallurgical and Materials Transactions A27, 3993–4002 (1996).

    Article  Google Scholar 

  27. D. Pilone, F. Felli and A. Brotzu, Intermetallics43, 131–137 (2013).

    Article  CAS  Google Scholar 

  28. J. Malecka, Oxidation of Metals91, 365–380 (2019).

    Article  CAS  Google Scholar 

  29. M. Hadi, O. Bayat, M. Meratian, A. Shafyei and I. Ebrahimzadeh, Oxidation of Metals90, 421–434 (2018).

    Article  CAS  Google Scholar 

  30. Y. Garip and O. Ozdemir, Journal of Alloys and Compounds818, 152818 (2020).

    Article  CAS  Google Scholar 

  31. V. A. C. Haanappel, J. D. Sunderkotter and M. F. Stroosnijder, Intermetallics7, 529–541 (1999).

    Article  CAS  Google Scholar 

  32. L. L. Zhao, J. P. Lin, Y. L. Wang, F. Ye and G. L. Chen, Acta Metall Sin44, 557–564 (2008).

    CAS  Google Scholar 

  33. J. M. **ang, G. B. Mi, S. J. Qu, et al., Scientific Reports8, 12761 (2018).

    Article  CAS  Google Scholar 

  34. T. Izumi, T. Yoshioka, S. Hayashi and T. Narita, Intermetallics13, 694–703 (2005).

    Article  CAS  Google Scholar 

  35. S. Yuke, S. W. Kim, J. Hahn and D. B. Lee, Oxidation of Metals91, 677–689 (2019).

    Article  CAS  Google Scholar 

  36. D. Kim, D. Seo, S. W. Kim, et al., Oxidation of Metals86, 417–430 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China for their financial support under contract No. 51971215, the National Natural Science Foundation of Liaoning province of China for their financial support under contract No. 2019-MS-330, and the China postdoctoral science foundation (2019M661152). The authors also thank Prof. Shunnan Zhang in IMR for valuable discussions and Li** Yang in Tsinghua University for her careful analysis and testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aobing Li or Kui Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Li, X., Tang, H. et al. Improved High-Temperature Oxidation Properties for Mn-Containing Beta-Gamma TiAl with W Addition. Oxid Met 93, 433–448 (2020). https://doi.org/10.1007/s11085-020-09964-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09964-9

Keywords

Navigation