Log in

Influence of Microstructure on Tensile Properties and Deformation Mechanism of Ti-5Al-1V-1Sn-1Zr-0.8Mo Alloy: Bimodal Versus Basketweave Structures

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of microstructures (bimodal and basketweave) on the tensile properties and deformation mechanism of Ti-5Al-1V-1Sn-1Zr-0.8Mo alloy was investigated via an in situ tensile test monitored by electron backscatter diffraction (EBSD)-assisted slip trace analysis. The bimodal structure exhibited good plasticity, but its tensile strength was lower than that of the basketweave structure. These variations could be attributed to the larger α colony structure in the basketweave structure. In situ tensile testing showed that the α colony in the basketweave structure can promote the formation of shear bands, leading to decreased plasticity. The activation of numerous slip systems in αp of the bimodal structure ensured good plasticity. Meanwhile, deformation twins were occasionally observed in the bimodal structure. However, dislocation slip and deformation twins were observed inside the large-sized grain boundary α (αGB) phase in the basketweave structure. The results of this study can extend the potential application of Ti alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Been and K. Faller, Using Ti-5111 for Marine Fastener Applications, JOM, 1999, 51, p 21–24.

    Article  CAS  Google Scholar 

  2. S. Nimer, J. Wolk, and M. Zupan, Local Property Characterization of Friction Stir Welded Ti-5111: Transverse Orientation Measurements, Acta Mater., 2013, 61, p 3050–3059.

    Article  CAS  Google Scholar 

  3. I.V. Okulov, A.S. Volegov, H. Attar, M. Bönisch, S. Ehtemam-Haghighi, M. Calin, and J. Eckert, Composition Optimization of Low Modulus and High-Strength TiNb-Based Alloys for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2017, 65, p 866–871.

    Article  CAS  Google Scholar 

  4. I.V. Okulov, S. Pauly, U. Kühn, P. Gargarella, T. Marr, J. Freudenberger, L. Schultz, J. Scharnweber, C.-G. Oertel, W. Skrotzki, and J. Eckert, Effect of Microstructure on the Mechanical Properties of As-Cast Ti-Nb-Al-Cu-Ni alloys for biomedical application, Mater. Sci. Eng. C, 2013, 33, p 4795–4801.

    Article  CAS  Google Scholar 

  5. D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61, p 844–879.

    Article  CAS  Google Scholar 

  6. D.S. Xu, H. Wang, J.H. Zhang, C.G. Bai, and R. Yang, Titanium Alloys: From Properties Prediction to Performance Optimization, Handbook of Materials Modeling: Applications: Current and Emerging Materials. W. Andreoni, S. Yip Ed., Springer, Cham, 2019, p 1–39

    Google Scholar 

  7. Y.L. Hao, Z.B. Zhang, S.J. Li, and R. Yang, Microstructure and Mechanical Behavior of a Ti-24Nb-4Zr-8Sn Alloy Processed by Warm Swaging and Warm Rolling, Acta Mater., 2012, 60, p 2169–2177.

    Article  CAS  Google Scholar 

  8. J. Zhu, H. Wu, D. Wang, Y. Gao, H. Wang, Y. Hao, R. Yang, T.Y. Zhang, and Y. Wang, Crystallographic Analysis and Phase Field Simulation of Transformation Plasticity in a Multifunctional β-Ti Alloy, Int. J. Plast., 2017, 89, p 110–129.

    Article  CAS  Google Scholar 

  9. I.V. Okulov, M. Bönisch, U. Kühn, W. Skrotzki, and J. Eckert, Significant Tensile Ductility and Toughness in an Ultra Fine-Structured Ti68.8 Nb13.6 Co6 Cu5.1 Al6.5 Bi-modal Alloy, Mater. Sci. Eng. A, 2014, 615, p 457–463.

    Article  CAS  Google Scholar 

  10. K.E. Knipling and R.W. Fonda, Microstructural Evolution in Ti-5111 Friction Stir Welds, Metall. Mater. Trans. A, 2011, 42, p 2312–2322.

    Article  CAS  Google Scholar 

  11. K. Gangwar and M. Ramulu, Friction Stir Welding of Titanium Alloys: A Review, Mater. Des., 2018, 41, p 230–255.

    Article  Google Scholar 

  12. R.P. Kolli, A.A. Herzing, and S. Ankem, Characterization of Yttrium-Rich Precipitates in a Titanium Alloy Weld, Mater. Charact., 2016, 122, p 30–35.

    Article  CAS  Google Scholar 

  13. S. Nimer, R.K. Everett, and M. Zupan, Microtensile Characterization of Titanium 5111 Alloy Mechanical Properties and Comparison of Failure Mechanisms at Two Microstructural Length Scales, Mater. Des., 2019, 183, p 108081.

    Article  CAS  Google Scholar 

  14. K.E. Knipling and R.W. Fonda, Texture Development in the Stir Zone of Near-α Titanium Friction Stir Welds, Scr. Mater., 2009, 60, p 1097–1100.

    Article  CAS  Google Scholar 

  15. S. Nimer, J. Wolk, and M. Zupan, Location and Orientation Specific Material Property Evaluation of Friction Stir Welded Ti-5111: A Microsample Approach, Adv. Eng. Mater., 2014, 16, p 453–458.

    Article  Google Scholar 

  16. P.S. Pao, R.W. Fonda, H.N. Jones, C.R. Feng, and D.W. Moon, Fatigue Crack Growth in Friction Stir Welded Ti-5111, Tms Annual Meeting, 2009

  17. R.W. Fonda and K.E. Knipling, Texture Development in Near-α Ti Friction Stir Welds, Acta Mater., 2010, 58, p 6452–6463.

    Article  CAS  Google Scholar 

  18. G. Lutjering, Influence of Processing on Microstructure and Mechanical Properties of (α+β) Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 32–45.

    Article  Google Scholar 

  19. I.V. Okulov, U. Kühn, J. Romberg, I.V. Soldatov, J. Freudenberger, L. Schultz, A. Eschke, C.-G. Oertel, W. Skrotzki, and J. Eckert, Mechanical Behavior and Tensile/Compressive Strength Asymmetry of Ultrafine Structured Ti-Nb-Ni-Co-Al Alloys with Bi-modal Grain Size Distribution, Mater. Des., 2014, 62, p 14–20.

    Article  CAS  Google Scholar 

  20. I.V. Okulov, M. Bönisch, A.S. Volegov, H. Shakur Shahabi, H. Wendrock, T. Gemming, and J. Eckert, Micro-to-Nano-Scale Deformation Mechanism of a Ti-Based Dendritic-Ultrafine Eutectic Alloy Exhibiting Large Tensile Ductility, Mater. Sci. Eng. A, 2017, 682, p 673–678.

    Article  CAS  Google Scholar 

  21. S. Nimer, R.K. Everett, and M. Zupan, Microtensile Characterization of Titanium 5111 Alloy Mechanical Properties and Comparison of Failure Mechanisms at Two Microstructural Length Scales, Mater. Des., 2019, 183, p 108081.

    Article  CAS  Google Scholar 

  22. Q. Wang, J. Ren, B. Zhang, C. **n, Y. Wu, and M. Ye, Influence of Microstructure on the Fatigue Crack Growth Behavior of a Near-Alpha TWIP Ti Alloy, Mater. Charact., 2021, 178, p 111208.

    Article  CAS  Google Scholar 

  23. Q. Wang, J. Ren, B. Zhang, C. **n, Y.K. Wu, and L. Zhang, Simultaneously Improved Strength and Elongation at Cryogenic Temperature in Ti-5Al-1V-1Sn-1Zr-0.8Mo Alloy with a Bimodal Structure, Mater. Sci. Eng. A, 2021, 824, p 141792.

    Article  CAS  Google Scholar 

  24. T. Furuhara and H.I. Aaronson, Crystallography and Interfacial Structure of Proeutectoid α Grain Boundary Allotriomorphs in a Hypoeutectoid Ti-6.62 at.% Alloy, Acta Metall. Mater., 1991, 39, p 2887–2899.

    Article  CAS  Google Scholar 

  25. J. Ren, Q. Wang, B. Zhang, D. Yang, X. Lu, X. Zhang, X. Zhang, and J. Hu, Influence of Microstructure on Fatigue Crack Growth Behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Bimodal vs. Lamellar Structures, Intermetallics, 2021, 130, p 107058.

    Article  CAS  Google Scholar 

  26. L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.S. Park, J. Lind, R.M. Suter, and T.R. Bieler, Direct Measurement of Critical Resolved Shear Stress of Prismatic and Basal Slip in Polycrystalline Ti using High Energy X-ray Diffraction Microscopy, Acta Mater., 2017, 132, p 598–610.

    Article  CAS  Google Scholar 

  27. H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, and M.A. Crimp, Methodology for Estimating the Critical Resolved Shear Stress Ratios of α-Phase Ti using EBSD-Based Trace Analysis, Acta Mater., 2013, 61, p 7555–7567.

    Article  CAS  Google Scholar 

  28. K. Kishida, J.G. Kim, T. Nagae, and H. Inui, Experimental Evaluation of Critical Resolved Shear Stress for the First-Order Pyramidal c + a Slip in Commercially Pure Ti by Micropillar Compression Method, Acta Mater., 2020, 196, p 168–174.

    Article  CAS  Google Scholar 

  29. H. Li, D. Mason, Y. Yang, T. Bieler, M. Crimp, and C. Boehlert, Comparison of the Deformation Behavior of Commercially Pure Titanium and Ti-5Al-2.5Sn(wt.%) at 296 and 728 K, Philos. Mag., 2013, 93, p 2875–2895.

    Article  CAS  Google Scholar 

  30. H. Li, C. Boehlert, T. Bieler, and M. Crimp, Analysis of Slip Activity and Heterogeneous Deformation in Tension and Tension-Creep of Ti-5Al-2.5Sn (wt.%) using In-Situ SEM Experiments, Philos. Mag., 2012, 92, p 2923–2946.

    Article  CAS  Google Scholar 

  31. J.Q. Ren, Q. Wang, X.F. Lu, W.F. Liu, P.L. Zhang, and X.B. Zhang, Effect of Oxygen Content on Active Deformation Systems in Pure Titanium Polycrystals, Mater. Sci. Eng. A, 2018, 731, p 530–538.

    Article  CAS  Google Scholar 

  32. H. Li, D. Mason, T. Bieler, C. Boehlert, and M. Crimp, Methodology for Estimating the Critical Resolved Shear Stress Ratios of α-Phase Ti using EBSD-Based Trace Analysis, Acta Mater., 2013, 61, p 7555–7567.

    Article  CAS  Google Scholar 

  33. C. Lavogiez, S. Hemery, and P. Villechaise, Concurrent Operation of <c+a> Slip and Twinning under Cyclic Loading of Ti-6Al-4V, Scr. Mater., 2018, 157, p 30–33.

    Article  CAS  Google Scholar 

  34. S. Xu, P. Zhou, G. Liu, D. **ao, M. Gong, and J. Wang, Shock-Induced Two Types of 10 1 2 Sequential Twinning in Titanium, Acta Mater., 2019, 165, p 547–560.

    Article  CAS  Google Scholar 

  35. M.H. Yoo, Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals, Metall. Mater. Trans. A, 1981, 12, p 409–418.

    Article  CAS  Google Scholar 

  36. P.G. Partridge, The Crystallography and Deformation Modes of Hexagonal Close-Packed Metals, Metall. Rev., 1967, 12, p 169–194.

    Article  CAS  Google Scholar 

  37. Y.T. Zhu, X.Z. Liao, and X.L. Wu, Deformation Twinning in Anocrystalline Materials, Prog. Mater. Sci., 2012, 57, p 1–62.

    Article  CAS  Google Scholar 

  38. B. Li and E. Ma, Atomic Shuffling Dominated Mechanism for Deformation Twinning in Magnesium, Phys. Rev. Lett., 2009, 103, p 035503.

    Article  CAS  Google Scholar 

  39. J. Wang, J.P. Hirth, and C.N. Tome, Twinning Nucleation Mechanisms in Hexagonal-Close-Packed Crystals, Acta Mater., 2009, 57, p 5521–5530.

    Article  CAS  Google Scholar 

  40. J.W. Christian and S. Mahajant, Deformation Twinning, Prog. Mater Sci., 1995, 39, p 1–157.

    Article  Google Scholar 

Download references

Acknowledgments

This project is financially supported by the National Natural Science Foundation of China (52061025), the Natural Science Foundation of Shaanxi Province (2020JC-50), Basic research plan of key scientific research projects of Henan universities (22A430027), Scientific and technological breakthroughs in Henan Province (222102240068) and Key Research Program of Education Department of Gansu Province (GSSYLXM-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junqiang Ren or Qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1349 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Chen, R., Wang, Q. et al. Influence of Microstructure on Tensile Properties and Deformation Mechanism of Ti-5Al-1V-1Sn-1Zr-0.8Mo Alloy: Bimodal Versus Basketweave Structures. J. of Materi Eng and Perform 32, 10354–10362 (2023). https://doi.org/10.1007/s11665-023-07846-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07846-0

Keywords

Navigation