Log in

In Situ SEM Investigation of Deformation Processes and Fracture Behavior in Bimodal Ti-6Al-3Nb-2Zr-1Mo Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The deformation mechanism, crack initiation, propagation and fracture behavior of a new near-α titanium alloy Ti80 (Ti-6Al-3Nb-2Zr-1Mo) with a bimodal microstructure consisting of primary α (αp) grains and transformed β (βtrans) matrix is systematically investigated by in situ tensile testing in SEM. The results show that αp preferentially undergoes plastic deformation (single slip) in the early stage of deformation. As the deformation continues, the crack nucleates in the hard-to-deform region near the U-shaped notch, and then advances through αp to form small cracks, which tend to initiate at the αp/βtrans interface and slip bands region. However, slip transfer occurs between some αp and adjacent βtrans, and multi-slip or cross-slip is generated in αp, which plays a role in coordinating the inhomogeneity of local plastic deformation and delaying crack initiation. In the crack propagation stage, the main crack and microcracks are connected to promote crack growth. The crack tends to propagate along the αp/βtrans interface or slip bands inside αp. The αp boundaries play the role of deflecting the crack propagation direction. However, a relatively flat crack path is formed from a macroscopic point of view due to the small particle size of αp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw and processed data generated during this study will be made available upon reasonable request.

References

  1. J. Ren, Q. Wang, B. Zhang, D. Yang, X. Lu, X. Zhang, X. Zhang, and J. Hu, Intermetallics 130, 107058 https://doi.org/10.1016/j.intermet.2020.107058 (2021).

    Article  Google Scholar 

  2. B. Su, L. Luo, B. Wang, Y. Su, L. Wang, R.O. Ritchie, E. Guo, T. Li, H. Yang, H. Huang, J. Guo, and H. Fu, J. Mater. Sci. Technol. 62, 234 https://doi.org/10.1016/j.jmst.2020.05.058 (2021).

    Article  Google Scholar 

  3. B. Su, B. Wang, L. Luo, L. Wang, B. Li, C. Liu, Y. Su, Y. Xu, H. Huang, J. Guo, H. Fu, and Y. Zou, Chem. Eng. J. 444, 136524 https://doi.org/10.1016/j.cej.2022.136524 (2022).

    Article  Google Scholar 

  4. C. Wu, Q. Zhao, S. Huang, Y. Zhao, L. Lei, J. Ren, Q. Sun, and L. Zhou, J. Mater. Sci. Technol. 112, 36 https://doi.org/10.1016/j.jmst.2021.09.051 (2022).

    Article  Google Scholar 

  5. J. Shen, B. Chen, J. Umeda, J. Zhang, Y. Li, and K. Kondoh, Mech. Mater. 148, 103519 https://doi.org/10.1016/j.mechmat.2020.103519 (2020).

    Article  Google Scholar 

  6. J. Wang, Y. Zhao, W. Zhou, Q. Zhao, S. Huang, and W. Zeng, Mater. Sci. Eng. A 799, 140187 https://doi.org/10.1016/j.msea.2020.140187 (2021).

    Article  Google Scholar 

  7. X. Xu, D. Lunt, R. Thomas, R.P. Babu, A. Harte, M. Atkinson, J.Q. da Fonseca, and M. Preuss, Acta Mater. 175, 376 https://doi.org/10.1016/j.actamat.2019.06.024 (2019).

    Article  Google Scholar 

  8. J.L. Cann, A. De Luca, D.C. Dunand, D. Dye, D.B. Miracle, H.S. Oh, E.A. Olivetti, T.M. Pollock, W.J. Poole, R. Yang, and C.C. Tasan, Prog. Mater. Sci. https://doi.org/10.1016/j.pmatsci.2020.100722 (2021).

    Article  Google Scholar 

  9. S. Hémery, and P. Villechaise, Acta Mater. 171, 261 https://doi.org/10.1016/j.actamat.2019.04.033 (2019).

    Article  Google Scholar 

  10. Z. Zhang, D. Lunt, H. Abdolvand, A.J. Wilkinson, M. Preuss, and F.P.E. Dunne, Int. J. Plasticity 108, 88 https://doi.org/10.1016/j.ijplas.2018.04.014 (2018).

    Article  Google Scholar 

  11. L. Lei, Y. Zhao, Q. Zhao, C. Wu, S. Huang, W. Jia, and W. Zeng, Mater. Sci. Eng. A 801, 140411 https://doi.org/10.1016/j.msea.2020.140411 (2021).

    Article  Google Scholar 

  12. D. Lunt, R. Thomas, M.D. Atkinson, A. Smith, R. Sandala, J.Q. da Fonseca, and M. Preuss, Acta Mater. 216, 117111 https://doi.org/10.1016/j.actamat.2021.117111 (2021).

    Article  Google Scholar 

  13. L. Lei, Q. Zhao, Y. Zhao, C. Wu, S. Huang, W. Jia, and W. Zeng, J. Mater. Process. Technol. 299, 117322 https://doi.org/10.1016/j.jmatprotec.2021.117322 (2022).

    Article  Google Scholar 

  14. Y. Cao, S. Ni, X. Liao, M. Song, and Y. Zhu, Mater. Sci. Eng. R Rep. 133, 1 https://doi.org/10.1016/j.mser.2018.06.001 (2018).

    Article  Google Scholar 

  15. L. Lei, Q. Zhao, Q. Zhu, M. Yang, W. Yang, W. Zeng, and Y. Zhao, Mater. Sci. Eng. A 860, 144258 https://doi.org/10.1016/j.msea.2022.144258 (2022).

    Article  Google Scholar 

  16. L. Lei, Q. Zhu, Q. Zhao, M. Yang, W. Yang, W. Zeng, and Y. Zhao, Mater. Charact. 195, 112504 https://doi.org/10.1016/j.matchar.2022.112504 (2023).

    Article  Google Scholar 

  17. B. Zhou, R. Yang, B. Wang, L. Deng, and Y. Zhang, Mater. Sci. Eng. A 803, 140458 https://doi.org/10.1016/j.msea.2020.140458 (2021).

    Article  Google Scholar 

  18. S. Ankem, H. Margolin, C. Greene, B. Neuberger, and P. Oberson, Prog. Mater. Sci. 51(5), 632 https://doi.org/10.1016/j.pmatsci.2005.10.003 (2006).

    Article  Google Scholar 

  19. C. Tan, Q. Sun, L. **ao, Y. Zhao, and J. Sun, J. Alloys Compd. 724, 112 https://doi.org/10.1016/j.jallcom.2017.07.002 (2017).

    Article  Google Scholar 

  20. I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B.P. Uberuaga, Prog. Mater. Sci. 74, 125 https://doi.org/10.1016/j.pmatsci.2015.02.001 (2015).

    Article  Google Scholar 

  21. L. Lei, Q. Zhao, C. Wu, Y. Zhao, S. Huang, W. Jia, and W. Zeng, J. Mater. Sci. Technol. 99, 101 https://doi.org/10.1016/j.jmst.2021.04.069 (2022).

    Article  Google Scholar 

  22. L. Lei, Q. Zhao, Y. Zhao, S. Huang, C. Wu, W. Jia, and W. Zeng, Mater. Charact. 177, 111164 https://doi.org/10.1016/j.matchar.2021.111164 (2021).

    Article  Google Scholar 

  23. S. Waheed, Z. Zheng, D.S. Balint, and F.P.E. Dunne, Acta Mater. 162, 136 https://doi.org/10.1016/j.actamat.2018.09.035 (2019).

    Article  Google Scholar 

  24. S. Wei, J. Kim, and C.C. Tasan, Int. J. Plasticity 148, 103131 https://doi.org/10.1016/j.ijplas.2021.103131 (2022).

    Article  Google Scholar 

  25. S. Wei, G. Zhu, and C.C. Tasan, Acta Mater. 206, 116520 https://doi.org/10.1016/j.actamat.2020.116520 (2021).

    Article  Google Scholar 

  26. H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, and M.A. Crimp, Acta Mater. 61(20), 7555 https://doi.org/10.1016/j.actamat.2013.08.042 (2013).

    Article  Google Scholar 

  27. S. Huang, Q. Zhao, C. Lin, C. Wu, Y. Zhao, W. Jia, and C. Mao, Mater. Sci. Eng. A 809, 140958 https://doi.org/10.1016/j.msea.2021.140958 (2021).

    Article  Google Scholar 

  28. B. Wang, W. Zeng, Z. Zhao, R. Jia, J. Xu, and Q. Wang, J. Alloys Compd. 923, 166464 https://doi.org/10.1016/j.jallcom.2022.166464 (2022).

    Article  Google Scholar 

  29. S. Joseph, I. Bantounas, T.C. Lindley, and D. Dye, Int. J. Plasticity 100, 90 https://doi.org/10.1016/j.ijplas.2017.09.012 (2018).

    Article  Google Scholar 

  30. Z. Yan, K. Wang, Y. Zhou, X. Zhu, R. **n, and Q. Liu, Scr. Mater. 156, 110 https://doi.org/10.1016/j.scriptamat.2018.07.023 (2018).

    Article  Google Scholar 

  31. S. Shen, B. He, and H. Wang, Mater. Sci. Eng. A 849, 143467 https://doi.org/10.1016/j.msea.2022.143467 (2022).

    Article  Google Scholar 

  32. C.A. Greene, and S. Ankem, Mater. Sci. Eng. A 202(1), 103 https://doi.org/10.1016/0921-5093(95)09786-4 (1995).

    Article  Google Scholar 

  33. W.H. Miller, R.T. Chen, and E.A. Starke, Metall. Trans. A 18(8), 1451 https://doi.org/10.1007/BF02646658 (1987).

    Article  Google Scholar 

  34. J.R. Seal, M.A. Crimp, T.R. Bieler, and C.J. Boehlert, Mater. Sci. Eng. A 552, 61 https://doi.org/10.1016/j.msea.2012.04.114 (2012).

    Article  Google Scholar 

  35. S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou, and M.J. Mills, Acta Mater. 47(3), 1019 https://doi.org/10.1016/S1359-6454(98)00364-4 (1999).

    Article  Google Scholar 

  36. D. He, J. Zhu, S. Zaefferer, and D. Raabe, Mater. Des.(1980-2015) 56, 937 https://doi.org/10.1016/j.matdes.2013.12.018 (2014).

    Article  Google Scholar 

  37. X. Liu, Y. Qian, Q. Fan, Y. Zhou, X. Zhu, and D. Wang, J. Alloys Compd. 826, 154209 https://doi.org/10.1016/j.jallcom.2020.154209 (2020).

    Article  Google Scholar 

  38. Z. Zheng, S. Waheed, D.S. Balint, and F.P.E. Dunne, Int. J. Plasticity 104, 23 https://doi.org/10.1016/j.ijplas.2018.01.011 (2018).

    Article  Google Scholar 

  39. J. Wang, Y. Zhao, W. Zhou, Q. Zhao, C. Lei, and W. Zeng, Mater. Sci. Eng. A 824, 141790 https://doi.org/10.1016/j.msea.2021.141790 (2021).

    Article  Google Scholar 

  40. H. Wu, and G. Fan, Prog. Mater. Sci. 113, 100675 https://doi.org/10.1016/j.pmatsci.2020.100675 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of The National Defense Basic Scientific Research (JCKY2020607B003).

Author information

Authors and Affiliations

Authors

Contributions

HC: Conceptualization, Methodology, Writing—original draft, Formal analysis. XL: Investigation, Funding acquisition. YD: Methodology, Investigation. FH: Methodology, Investigation. JY: Methodology, Investigation. SL: Supervision. KW: Investigation. LL: Writing—Review & Editing.

Corresponding authors

Correspondence to **anghong Liu or Yuxuan Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, X., Du, Y. et al. In Situ SEM Investigation of Deformation Processes and Fracture Behavior in Bimodal Ti-6Al-3Nb-2Zr-1Mo Alloy. JOM 75, 2771–2779 (2023). https://doi.org/10.1007/s11837-023-05811-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05811-9

Navigation