Log in

Influence of Rolling on Foamable Precursor Sandwich and Aluminum Foam Sandwich

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A novel method of compound casting with hot-rolling to prepare foamable precursor sandwich (FPS) is proposed in this paper, and aluminum foam sandwich (AFS) was obtained by subsequent foaming. The cores and interfaces of FPSs and AFSs made with different rolling passes were investigated. The results indicate that increase of the rolling pass can improve the foaming capacity of FPS, cell uniformity and interface bonding quality of AFS. The differences in load resistance and energy absorption of AFSs made with different rolling passes were compared under three-point bending tests. It is found that the deformation uniformity of core cells increases but the overall load resistance and energy absorption of AFS decrease with the rolling pass. The evaluation of facesheet/core interface effect on the load resistance and energy absorption of AFS showed increasing the facesheet thickness and rolling pass is a good way to enhance the load resistance and energy absorption for AFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Research data are not shared.

References

  1. J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46, p 559–632.

    Article  CAS  Google Scholar 

  2. A. Nawaz and S. Rani, Fabrication and Evaluation of Percent Porosity and Density Reduction of Aluminium Alloy Foam, Mater. Tod.: Proceed., 2021, 47, p 6025–6029.

    CAS  Google Scholar 

  3. A.K. Shukla, D.P. Mondal, and J.D. Majumdar, Metallurgical Characteristics, Compressive Strength, and Chemical Degradation Behavior of Aluminum-Cenosphere Composite Foam Developed by Spray Forming Route, J. Mater. Eng. Perform., 2021, 30, p 5750–5762.

    Article  CAS  Google Scholar 

  4. T. Fiedler, M. Taherishargh, L. Krstulović-Opara, and M. Vesenjak, Dynamic Compressive Loading of Expanded Perlite/Aluminum Syntactic Foam, Mater. Sci. Eng. A, 2015, 626, p 296–304.

    Article  CAS  Google Scholar 

  5. D.D. Luong, O.M. Strbik III., V.H. Hammond, N. Gupta, and K. Cho, Development of high Performance Lightweight Aluminum Alloy/Sic Hollow Sphere Syntactic Foams and Compressive Characterization at Quasi-Static and high Strain Rates, J. Alloy. Comp., 2013, 550, p 412–422.

    Article  CAS  Google Scholar 

  6. J. Banhart and H.W. Seeliger, Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications, Adv. Eng. Mater., 2008, 10, p 793–802.

    Article  CAS  Google Scholar 

  7. T.R. Neu, P.H. Kamm, N. Von Der Eltz, H.W. Seeliger, J. Banhart, and F. Garcia-Moreno, Correlation between Foam Structure and Mechanical Performance of Aluminium Foam Sandwich Panels, Mater. Sci. Eng. A, 2021, 800, 140260.

    Article  CAS  Google Scholar 

  8. N.Z. Wang, X. Chen, A. Li, Y.X. Li, H.W. Zhang, and Y. Liu, Three-Point Bending Performance of a New Aluminum Foam Composite Structure, Trans. Nonferrous Met. Soc. China, 2016, 26, p 359–368.

    Article  CAS  Google Scholar 

  9. W. Zhang, Q.H. Qin, J.F. Li, K.K. Li, L.H. Poh, Y. Li, J.X. Zhang, S.J. **e, H.E. Chen, and J.P. Zhao, Deformation and Failure of Hybrid Composite Sandwich Beams with a Metal Foam Core under Quasi-Static Load and Low-Velocity Impact, Compo Struct, 2020, 242, p 112175.

    Article  Google Scholar 

  10. Y. Zhao, Z.H. Yang, T.L. Yu, and D.B. **n, Mechanical Properties and Energy Absorption Capabilities of Aluminium Foam Sandwich Structure Subjected to Low-Velocity Impact, Const. Build. Mater., 2021, 273, p 121996.

    Article  Google Scholar 

  11. T.A. Barnes and I.R. Pashby, Joining Techniques for Aluminium Spaceframes Used in Automobiles: Part II — Adhesive Bonding and Mechanical Fasteners, J. Mater. Pro. Tech., 2000, 99, p 72–79.

    Article  Google Scholar 

  12. T. Utsunomiya, N. Ishii, Y. Hangai, S. Koyama, O. Kuwazuru, and N. Yoshikawa, Relationship between Porosity and Interface Fracture on Aluminum Foam Sandwich with Dense Steel Face Sheets Fabricated by Friction Stir Processing Route, Mater. Trans., 2012, 53, p 1674–1679.

    Article  CAS  Google Scholar 

  13. X.T. Lu, H.J. Luo, S.J. Yang, Y. Wei, J.R. Xu, and Z. Yao, Two-Step Foaming Process Combined with Hot-Rolling in Fabrication of an Aluminium Foam Sandwich Panel, Mater. Lett., 2020, 265, p 127427.

    Article  CAS  Google Scholar 

  14. L. Wan, Y.X. Huang, T.F. Huang, S.X. Lv, and J.C. Feng, Novel Method of Fluxless Soldering with Self-Abrasion for Fabricating Aluminum Foam Sandwich, J. Alloy. Comp., 2015, 640, p 1–7.

    Article  CAS  Google Scholar 

  15. L. Wan, Y.X. Huang, S.X. Lv, and J.C. Feng, Fabrication and Interfacial Characterization of Aluminum Foam Sandwich via Fluxless Soldering with Surface Abrasion, Comp. Struct., 2015, 123, p 366–373.

    Article  Google Scholar 

  16. P. Peng, K.S. Wang, W. Wang, L.Y. Huang, K. Qiao, Q.Y. Che, X.P. **, B. Zhang, and J. Cai, High-Performance Aluminium Foam Sandwich Prepared through Friction Stir Welding, Mater. Lett., 2019, 236, p 295–298.

    Article  CAS  Google Scholar 

  17. H. Lin, H.J. Luo, W.Z. Huang, X. Zhang, and G.C. Yao, Diffusion Bonding in Fabrication of Aluminum Foam Sandwich Panels, J. Mater. Pro. Tech., 2016, 230, p 35–41.

    Article  CAS  Google Scholar 

  18. K. Kitazono, E. Sato, and K. Kuribayashi, Novel Manufacturing Process of Closed-Cell Aluminum Foam by Accumulative Roll-Bonding, Scr. Mater., 2004, 50, p 495–498.

    Article  CAS  Google Scholar 

  19. A. Yazdani and E. Salahinejad, Evolution of Reinforcement Distribution in Al-B4C Composites during Accumulative Roll Bonding, Mater. Des., 2011, 32, p 3137–3142.

    Article  CAS  Google Scholar 

  20. F. Baumgartner, I. Duarte and J. Banhart, Industrialization of Powder Compact Toaming Process, Adv. Eng. Mater., 2000, 2, p 168–174.

    Article  CAS  Google Scholar 

  21. G.Y. Zu, B.N. Song, Z.Y. Zhong, X.B. Li, Y.L. Mu, and G.C. Yao, Static Three-Point Bending Behavior of Aluminum Foam Sandwich, J. Alloy. Comp., 2012, 540, p 275–278.

    Article  CAS  Google Scholar 

  22. Y.Q. Wang, X.P. Ren, H.L. Hou, Y.L. Zhang, and W.X. Yan, Processing and Pore Structure of Aluminium Foam Sandwich, Powd. Technol., 2015, 275, p 344–350.

    Article  CAS  Google Scholar 

  23. Z.Y. Liu, Y. Cheng, Y.X. Li, X. Zhou, X. Chen, and N.Z. Wang, Shape Formation of Closed-Cell Aluminum Foam in Solid-Liquid-Gas Coexisting State, Int. J. Miner. Metall. Mater., 2018, 25, p 974–980.

    Article  CAS  Google Scholar 

  24. V. Crupi and R. Montanini, Aluminium Foam Sandwiches Collapse Modes under Static and Dynamic Three-Point Bending, Int. J. Impact Eng., 2007, 34, p 509–521.

    Article  Google Scholar 

  25. T.M. Mccormack, R. Miller, O. Kesler, and L.J. Gibson, Failure of Sandwich Beams with Metallic Foam Cores, Int. J. Solids Struct., 2001, 38, p 4901–4920.

    Article  Google Scholar 

  26. X. Ding, Y. Liu, and T. Wan, A Novel Hot-Pressing Method to Prepare Foamable Precursor of Aluminum Foam Sandwich (AFS), Mater. Lett., 2020, 259, p 126895.

    Article  CAS  Google Scholar 

  27. K. Heim, G.S. Vinod-kumar, F. Garcia-Moreno, A. Rack, and J. Banhart, Stabilisation of Aluminium Foams and Films by the Joint Action of Dispersed Particles and Oxide Films, Acta Mater., 2015, 99, p 313–324.

    Article  CAS  Google Scholar 

  28. B.C. Pai, G. Ramani, R.M. Pillai, and K.G. Satyanarayana, Role of Magnesium in Cast Aluminium Alloy Matrix Composites, J. Mater. Sci., 1995, 30, p 1903–1911.

    Article  CAS  Google Scholar 

  29. S.I. Fujikawa, K.I. Hirano, and Y. Fukushima, Diffusion of Silicon in Aluminum, Metall. Trans. A, 1978, 9, p 1811–1815.

    Article  Google Scholar 

  30. S.M. Hosseini, A. Habibolahzadeh, V. Petranova, and J. Ne Mecek, Influence of Nano-SiCp on the Foamability and Microstructure of Al/TiH2 Foam Sheet Manufactured by Continual Annealing and Roll-Bonding Process, Mater. Des., 2016, 97, p 483–491.

    Article  CAS  Google Scholar 

  31. S.M. Hosseini and A. Habibolahzadeh, Investigation of Nano-SiCp Effect on Microstructure and Mechanical Properties of Al/TiH2 Foam Precursor Produced via ARB Process, Mater. Sci. Eng. A, 2015, 639, p 80–88.

    Article  CAS  Google Scholar 

  32. R. Jamaati and M.R. Toroghinejad, Manufacturing of High-Strength Aluminum/Alumina Composite by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2010, 527, p 4146–4151.

    Article  Google Scholar 

  33. J.A. Liu, Q.X. Qu, Y. Liu, R.G. Li, and B. Liu, Compressive Properties of Al-Si-SiC Composite Foams at Elevated Temperatures, J. Alloy. Comp., 2016, 676, p 239–244.

    Article  CAS  Google Scholar 

  34. R.X. Huang, S.Q. Ma, M.D. Zhang, J.J. Xu, and Z.Y. Wang, Dynamic Deformation and Failure Process of Quasi-Closed-Cell Aluminum Foam Manufactured by Direct Foaming Technique, Mater. Sci. Eng. A, 2019, 756, p 302–311.

    Article  CAS  Google Scholar 

  35. D.K. Rajak, L.A. Kumaraswamidhas, S. Das, and S.S. Kumaran, Characterization and Analysis of Compression Load Behaviour of Aluminium Alloy Foam under the Diverse Strain Rate, J. Alloy. Comp., 2016, 656, p 218–225.

    Article  CAS  Google Scholar 

  36. X.T. Huo, G.Y. Sun, H.Y. Zhang, X.J. Lv, and Q. Li, Experimental Study on Low-Velocity Impact Responses and Residual Properties of Composite Sandwiches with Metallic Foam Core, Compo. Struct., 2019, 223, p 110835.

    Article  Google Scholar 

  37. M. Mukherjee, U. Ramamurty, F. Garcia-Moreno, and J. Banhart, The Effect of Cooling Rate on the Structure and Properties of Closed-Cell Aluminium Foams, Acta Mater., 2010, 58, p 5031–5042.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51874093) and the Liaoning province key r&d project (No. 2019JH2/10100008). The authors would like to acknowledge these organizations for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Luo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Luo, H., Lu, X. et al. Influence of Rolling on Foamable Precursor Sandwich and Aluminum Foam Sandwich. J. of Materi Eng and Perform 32, 2488–2500 (2023). https://doi.org/10.1007/s11665-022-07290-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07290-6

Keywords

Navigation