Log in

Recent advancements in silica filled natural rubber composite: A green approach to achieve smart properties in tyre

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The partial or total replacement of carbon black by silica fillers is initiated through various techniques for environment-friendly, smart, and fuel-efficient NR composites for high-end dynamic applications like tyre tread. The smart properties such as low rolling resistance, better wet skid resistance, and abrasion resistance as well as noise reduction, create tyre tread compounds with superior performance. The endeavour to maximise the incorporation of eco-friendly ingredients like silica filler in rubber compound associates to produce a green tyre product indeed. The present review encompasses those approaches with a substantial contribution in the area along with critical insights in the respective efforts. Initially, the various types of commercially available silica fillers are discussed in brief, followed by the various approaches for surface modification in detail. Finally, the miscellaneous initiatives along with their achievements and drawbacks are included under five strategic verticals for better understanding along with vital remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data and code availability

Available on special request.

References

  1. Babaso PN, Sharanagouda H (2017) Rice husk and its applications: review. Int J Curr Microbiol Appl Sci 6:1144–1156. https://doi.org/10.20546/ijcmas.2017.610.138

    Article  CAS  Google Scholar 

  2. Intharapat P, Kongnoo A, Kateungngan K (2013) The potential of chicken eggshell waste as a bio-filler filled Epoxidized Natural Rubber (ENR) composite and its properties. J Polym Environ 21:245–258. https://doi.org/10.1007/s10924-012-0475-9

    Article  CAS  Google Scholar 

  3. Ren X, Geng Y, Soboyejo ABO, Cornish K (2019) Reinforced mechanical properties of functionalized silica and eggshell filled guayule natural rubber composites. Rubber Chem Technol 14–20. https://doi.org/10.5254/rct.19.81485

  4. Katueangngan K, Tulyapitak T, Saetung A et al (2016) Renewable interfacial modifier for silica filled natural rubber compound. Procedia Chem 19:447–454. https://doi.org/10.1016/j.proche.2016.03.037

    Article  CAS  Google Scholar 

  5. Ngeow YW, Chapman AV, Heng JYY et al (2019) Characterization of silica modified with silanes by using thermogravimetric analysis combined with infrared detection. Rubber Chem Technol 92:237–262. https://doi.org/10.5254/rct.18.82626

    Article  CAS  Google Scholar 

  6. Tolnai G, Csempesz F, Kabai-Faix M et al (2007) Preparation and characterization of surface-modified silica-nanoparticles. Langmuir 17:2683–2687. https://doi.org/10.1021/la0007372

    Article  CAS  Google Scholar 

  7. Castellano M, Conzatti L, Turturro A et al (2007) Influence of the silane modifiers on the surface thermodynamic characteristics and dispersion of the silica into elastomer compounds. J Phys Chem B 111:4495–4502. https://doi.org/10.1021/jp0702144

    Article  CAS  PubMed  Google Scholar 

  8. Kang T, Jang I, Oh SG (2016) Surface modification of silica nanoparticles using phenyl trimethoxy silane and their dispersion stability in N-methyl-2-pyrrolidone. Colloids Surfaces A Physicochem Eng Asp 501:24–31. https://doi.org/10.1016/j.colsurfa.2016.04.060

    Article  CAS  Google Scholar 

  9. Sattayanurak S, Noordermeer JWM, Sahakaro K et al (2019) Silica-reinforced natural rubber: synergistic effects by addition of small amounts of secondary fillers to silica-reinforced natural rubber tire tread compounds. Adv Mater Sci Eng 2019:1–8. https://doi.org/10.1155/2019/5891051

    Article  CAS  Google Scholar 

  10. Qiao B, Wang TJ, Gao H, ** Y (2015) High density silanization of nano-silica particles using γ-aminopropyltriethoxysilane (APTES). Appl Surf Sci 351:646–654. https://doi.org/10.1016/j.apsusc.2015.05.174

    Article  CAS  Google Scholar 

  11. Vieira T, Ferreira RP, Kuchiishi AK et al (2015) Evaluation of friction mechanisms and wear rates on rubber tire materials by low-cost laboratory tests. Wear 328–329:556–562. https://doi.org/10.1016/j.wear.2015.04.001

    Article  CAS  Google Scholar 

  12. AbdulRafiu A, Sovacool BK, Daniels C (2022) The dynamics of global public research funding on climate change, energy, transport, and industrial decarbonisation. Renew Sustain Energy Rev 162:112420. https://doi.org/10.1016/J.RSER.2022.112420

    Article  CAS  Google Scholar 

  13. Lazaro A, Van De Griend MC, Brouwers HJH, Geus JW (2013) The influence of process conditions and Ostwald ripening on the specific surface area of olivine nano-silica. Microporous Mesoporous Mater 181:254–261. https://doi.org/10.1016/j.micromeso.2013.08.006

    Article  CAS  Google Scholar 

  14. Lazaro A, Brouwers HJH, Quercia G, Geus JW (2012) The properties of amorphous nano-silica synthesized by the dissolution of olivine. Chem Eng J 211–212:112–121. https://doi.org/10.1016/j.cej.2012.09.042

    Article  CAS  Google Scholar 

  15. Utama PS, Yamsaensung R, Sangwichien C (2018) Silica gel derived from palm oil mill fly ash. Songklanakarin J Sci Technol 40:121–126. https://doi.org/10.14456/sjst-psu.2018.27

    Article  CAS  Google Scholar 

  16. Real C, Alcalá MD, Criado JM (1996) Preparation of silica from rice husks. J Am Ceram Soc 79:2012–2016. https://doi.org/10.1111/j.1151-2916.1996.tb08931.x

    Article  CAS  Google Scholar 

  17. Bragg W, Gibbs RE (1925) The structure of α and β quartz. The Royal Society

    Google Scholar 

  18. Lazaro A, Sato K, Brouwers HJH, Geus JW (2018) Pore structure development of silica particles below the isoelectric point. Microporous Mesoporous Mater 267:257–264. https://doi.org/10.1016/j.micromeso.2018.03.031

    Article  CAS  Google Scholar 

  19. Yuan J, Zhou S, Gu G, Wu L (2005) Effect of the particle size of nanosilica on the performance of epoxy/silica composite coatings. J Mater Sci 40:3927–3932. https://doi.org/10.1007/s10853-005-0714-8

    Article  CAS  Google Scholar 

  20. Fellow B, May R (1933) The thermal expansion of quartz by x-ray measurements. Proc R Soc London Ser A, Contain Pap a Math Phys Character 142:237–247. https://doi.org/10.1098/rspa.1933.0165

    Article  Google Scholar 

  21. Fricke J, Hümmer E, Morper H et al (1989) Thermal properties of silica aerogels. pp C4–87-C4–97

  22. Primak W (1964) Radiation-induced stress relaxation in quartz and vitreous silica. J Appl Phys 35:1342–1347. https://doi.org/10.1063/1.1713616

    Article  CAS  Google Scholar 

  23. Cinaralp F, Zullo L (2012) Reinforcing filler in the rubber industry: assessment as potential nanomaterials with a focus on tyres. Eur Tyre Rubber 2–11

  24. Barthel H, Rsch L, Weis J (2008) Fumed silica - production, properties, and applications. organosilicon chemistry set. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 761–778

    Google Scholar 

  25. Gun’ko VM, Mironyuk IF, Zarko VI, et al (2005) Morphology and surface properties of fumed silicas. J Colloid Interface Sci 289:427–445. https://doi.org/10.1016/j.jcis.2005.05.051

    Article  CAS  PubMed  Google Scholar 

  26. Fan Y, Li X, Jang SH et al (2018) Reinforcement of solution styrene-butadiene rubber by incorporating hybrids of rice bran carbon and surface modified fumed silica. J Vinyl Addit Technol 24:E194–E200. https://doi.org/10.1002/VNL.21635

    Article  CAS  Google Scholar 

  27. Michel W (2007) Pyrogenic silica as a filler for elastomeric materials. Int Polym Sci Technol 34:1–10. https://doi.org/10.1177/0307174x0703400701

    Article  Google Scholar 

  28. Ten Brinke J  (2002) Silica reinforced tyre rubbers. Elastomer Technology and Engineering. ISBN: 9036517583

  29. Musić S, Filipović-Vinceković N, Sekovanić L (2011) Precipitation of amorphous SiO2 particles and their properties. Brazilian J Chem Eng 28:89–94. https://doi.org/10.1590/S0104-66322011000100011

    Article  Google Scholar 

  30. Wang M-J, Tu H, Murphy LJ, Mahmud K (2011) Carbon—silica dual phase filler, a new generation reinforcing agent for rubber: Part VIII. Surface Characterization by IGC. Rubber Chem Technol 73:666–677. https://doi.org/10.5254/1.3547612

    Article  Google Scholar 

  31. Mora-Barrantes I, Rodríguez A, Ibarra L et al (2011) Overcoming the disadvantages of fumed silica as filler in elastomer composites. J Mater Chem 21:7381–7392. https://doi.org/10.1039/c1jm10410a

    Article  CAS  Google Scholar 

  32. Hewitt N (2007) Compounding precipitated silica in elastomers. Elsevier Inc

    Google Scholar 

  33. Ko JY, Prakashan K, Kim JK (2012) New silane coupling agents for silica tire tread compounds. J Elastomers Plast 44:549–562. https://doi.org/10.1177/0095244312439489

    Article  CAS  Google Scholar 

  34. Bera A, Ganguly D, Ghorai SK et al (2022) Treatment of natural rubber with bio-based components: A green endeavor to diminish the silica agglomeration for tyre tread application. Chem Eng J Adv 11:100349. https://doi.org/10.1016/j.ceja.2022.100349

    Article  CAS  Google Scholar 

  35. Bera A, Ganguly D, Hore R et al (2023) A feasible method of silica dispersion by introducing a pre-vulcanized gel in the natural rubber matrix. J Polym Res 30:1–16. https://doi.org/10.1007/S10965-023-03501-3/FIGURES/12

    Article  Google Scholar 

  36. Bera A, Goswami M, Ganguly D et al (2023) The variation of structure and property of sorbitol-treated NR vulcanizates with increasing the silica loading. J Mater Sci 58:996–1011. https://doi.org/10.1007/S10853-022-08092-W/FIGURES/12

    Article  CAS  Google Scholar 

  37. Bera A, Ganguly D, Rath JP et al (2023) The effect of bio-based ingredients in isoprene rubber: A biomimetic approach to improve the dispersion of silica. Mater Chem Phys 295:127151. https://doi.org/10.1016/J.MATCHEMPHYS.2022.127151

    Article  CAS  Google Scholar 

  38. Qian Z, Peng Z (2019) Reinforcing styrene-butadiene rubber composites by constructing multiple interaction between rubber and silica. Polym Compos 40:1740–1747. https://doi.org/10.1002/PC.24928

    Article  CAS  Google Scholar 

  39. Lockhorn D, Klüppel M (2020) Structure–property relationships of silica/silane formulations in natural rubber, isoprene rubber and styrene–butadiene rubber composites. J Appl Polym Sci 137:48435. https://doi.org/10.1002/app.48435

    Article  CAS  Google Scholar 

  40. Jiang T, Kuila T, Kim NH et al (2013) Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos Sci Technol 79:115–125. https://doi.org/10.1016/j.compscitech.2013.02.018

    Article  CAS  Google Scholar 

  41. Hayichelaeh C, Reuvekamp LAEM, Dierkes WK et al (2020) Silica-reinforced natural rubber tire tread compounds containing bio-based process oils. II: Influence of epoxide and amino functional groups. Rubber Chem Technol 93:195–207. https://doi.org/10.5254/rct.19.81461

    Article  CAS  Google Scholar 

  42. Tripp CP, Hair ML (1993) Chemical attachment of chlorosilanes to silica: A two-step amine-promoted reaction. J Phys Chem 97:5693–5698. https://doi.org/10.1021/j100123a038

    Article  CAS  Google Scholar 

  43. Zheng J, Han D, Ye X et al (2018) Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites. Polymer (Guildf) 135:200–210. https://doi.org/10.1016/j.polymer.2017.12.010

    Article  CAS  Google Scholar 

  44. Das S, Chattopadhyay S, Dhanania S, Bhowmick AK (2019) Reactive grafting of 3-octanoylthio-1-propyltriethoxysilane in styrene butadiene rubber: Characterization and its effect on silica reinforced tire composites. Polymer (Guildf) 179:121693. https://doi.org/10.1016/j.polymer.2019.121693

    Article  CAS  Google Scholar 

  45. Das S, Chattopadhyay S, Dhanania S, Bhowmick AK (2020) Improved dispersion and physico-mechanical properties of rubber/silica composites through new silane grafting. Polym Eng Sci 60:3115–3134. https://doi.org/10.1002/PEN.25541

    Article  CAS  Google Scholar 

  46. Das S, Pal K, Chattopadhyay S, Bhowmick AK (2022) 3-Octanoylthio-1-propyltriethoxysilane functionalized silica/rubber composites for application in tire: Structure, performance and synergism. Polym Compos 43:7575–7599. https://doi.org/10.1002/PC.26863

    Article  CAS  Google Scholar 

  47. Kaewsakul W, Sahakaro K, Dierkes WK, Noordermeer JWM (2013) Optimization of rubber formulation for silica-reinforced natural rubber compounds. Rubber Chem Technol 86:313–329. https://doi.org/10.5254/rct.13.87970

    Article  CAS  Google Scholar 

  48. Movahed SO, Arsarifar A, Song M (2009) Comparing the dynamic behaviour of several rubbers filled with silanized silica nanofiller. Polym Int 58:209–217. https://doi.org/10.1002/pi.2518

    Article  CAS  Google Scholar 

  49. Siramanont J, Tangpasuthadol V, Intasiri A, Na-ranong N (2009) Sol-Gel Process of Alkyltriethoxysilane in Latex for Alkylated Silica Formation in Natural Rubber 49:1099–1106. https://doi.org/10.1002/pen

    Article  CAS  Google Scholar 

  50. Theppradit T, Prasassarakich P, Poompradub S (2014) Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites. Mater Chem Phys 148:940–948. https://doi.org/10.1016/J.MATCHEMPHYS.2014.09.003

    Article  CAS  Google Scholar 

  51. Yin C, Zhang Q, Liu J et al (2018) Preparation, properties of In-situ silica modified styrene-butadiene rubber and its silica-filled composites. Polym Compos 39:22–28. https://doi.org/10.1002/PC.23897

    Article  CAS  Google Scholar 

  52. Naka Y, Komori Y, Yoshitake H (2010) One-pot synthesis of organo-functionalized monodisperse silica particles in W/O microemulsion and the effect of functional groups on addition into polystyrene. Colloids Surfaces A Physicochem Eng Asp 361:162–168. https://doi.org/10.1016/j.colsurfa.2010.03.034

    Article  CAS  Google Scholar 

  53. Sae-Oui P, Sirisinha C, Thepsuwan U, Hatthapanit K (2004) Comparison of reinforcing efficiency between Si-69 and Si-264 in a conventional vulcanization system. Polym Test 23:871–879. https://doi.org/10.1016/j.polymertesting.2004.05.008

    Article  CAS  Google Scholar 

  54. Zhang C, Tang Z, Guo B, Zhang L (2019) Concurrently improved dispersion and interfacial interaction in rubber/nanosilica composites via efficient hydrosilane functionalization. Compos Sci Technol 169:217–223. https://doi.org/10.1016/j.compscitech.2018.11.016

    Article  CAS  Google Scholar 

  55. Qu L, Yu G, **e X et al (2013) Effect of silane coupling agent on filler and rubber interaction of silica reinforced solution styrene butadiene rubber. Polym Compos 34:1575–1582. https://doi.org/10.1002/PC.22554

    Article  CAS  Google Scholar 

  56. Lin CJ, York WM, Cody RJ (2016) Silanization characterization and compound properties of silica-filled rubber containing a blocked mercapto silane. Rubber Chem Technol 90:126–145. https://doi.org/10.5254/rct.16.83771

    Article  CAS  Google Scholar 

  57. Xu T, Jia Z, Li J et al (2018) Study on the dispersion of carbon black/silica in SBR/BR composites and its properties by adding epoxidized natural rubber as a compatilizer. Polym Compos 39:377–385. https://doi.org/10.1002/PC.23946

    Article  CAS  Google Scholar 

  58. Manoharan P, Naskar K (2019) Eco-friendly composites derived from naturally occurring molecules in promoting dispersion of nanosized silica particulates. Polym Compos 40:871–883. https://doi.org/10.1002/PC.24749

    Article  CAS  Google Scholar 

  59. Ou Y-C, Yu Z-Z, AV and JBD, (1994) Effects of alkylation of silica filler on rubber reinforcement. Rubber Chem Technol 67:834–844

    Article  CAS  Google Scholar 

  60. Zhong B, Jia Z, Luo Y, Jia D (2015) A method to improve the mechanical performance of styrene- butadiene rubber via vulcanization accelerator modi fi ed silica. Compos Sci Technol 117:46–53. https://doi.org/10.1016/j.compscitech.2015.05.012

    Article  CAS  Google Scholar 

  61. Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys. doi 10(1063/1):1680061

    Google Scholar 

  62. Hita I, Arabiourrutia M, Olazar M et al (2016) Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renew Sustain Energy Rev 56:745–759. https://doi.org/10.1016/J.RSER.2015.11.081

    Article  CAS  Google Scholar 

  63. Antoniou N, Stavropoulos G, Zabaniotou A (2014) Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system. Renew Sustain Energy Rev 39:1053–1073. https://doi.org/10.1016/J.RSER.2014.07.143

    Article  CAS  Google Scholar 

  64. Chattopadhyay PK, Basuli U, Chattopadhyay S (2010) Studies on novel dual filler based epoxidized natural rubber nanocomposite. Polym Compos 31:835–846. https://doi.org/10.1002/PC.20866

    Article  CAS  Google Scholar 

  65. Zhang C, Tang Z, Guo B, Zhang L (2018) Signi fi cantly improved rubber-silica interface via subtly controlling surface chemistry of silica. Compos Sci Technol 156:70–77. https://doi.org/10.1016/j.compscitech.2017.12.020

    Article  CAS  Google Scholar 

  66. Pangamol P, Malee W, Yujaroen R, Siriwong PSC (2018) Utilization of bagasse ash as a filler in natural rubber and styrene – butadiene rubber composites. Arab J Sci Eng 43:221–227. https://doi.org/10.1007/s13369-017-2859-6

    Article  CAS  Google Scholar 

  67. Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surfaces A Physicochem Eng Asp 173:1–38. https://doi.org/10.1016/S0927-7757(00)00556-2

    Article  CAS  Google Scholar 

  68. Kaewsakul W, Sahakaro K, Dierkes WK (2015) Factors influencing the flocculation process in silica-reinforced natural rubber compounds. J Elastomers Plast 1–16. https://doi.org/10.1177/0095244315580456

  69. Mihara S, Datta RN, Noordermeer JWM (2011) Flocculation in silica reinforced rubber compounds. Rubber Chem Technol 82:524–540. https://doi.org/10.5254/1.3548262

    Article  CAS  Google Scholar 

  70. Kaewsakul W, Sahakaro K, Dierkes WK, Noordermeer JWM (2015) Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds. Polym Eng Sci 836–842. https://doi.org/10.1002/pen

  71. Snr GO, Smith RR (2002) Silica reinforced rubber composition which contains non-silane coupling agent and articles of manufacture, including a tire, having at least one component comprised of such rubber composition. 1:US645882

  72. Tian Q, Zhang C, Tang Y et al (2021) Preparation of hexamethyl disilazane-surface functionalized nano-silica by controlling surface chemistry and its “agglomeration-collapse” behavior in solution polymerized styrene butadiene rubber/butadiene rubber composites. Compos Sci Technol 201:108482. https://doi.org/10.1016/j.compscitech.2020.108482

    Article  CAS  Google Scholar 

  73. Lin J, Zhong B, Luo Y et al (2019) Enhancing interfacial and mechanical strength of styrene-butadiene rubber composites via in situ fabricated halloysite nanotubes/silica nano hybrid. Polym Compos 40:677–684. https://doi.org/10.1002/PC.24707

    Article  CAS  Google Scholar 

  74. Wang Z, Wang H, Shen X et al (2022) In situ assembled C3N4/SiO2 nanohybrids for high comprehensive performance solution polymerized styrene-butadiene rubber/butadiene rubber. Polym Compos 43:8228–8238. https://doi.org/10.1002/PC.26994

    Article  CAS  Google Scholar 

  75. Xu L, Huang Z, Zhang X et al (2023) Reinforcing styrene-butadiene rubber by silica/carbon black by-product composite through an in-situ polymerization process. Polym Compos 44:663–672. https://doi.org/10.1002/PC.27126

    Article  CAS  Google Scholar 

  76. Zhong B, Jia Z, Hu D et al (2015) Reinforcement and reinforcing mechanism of styrene-butadiene rubber by antioxidant-modified silica. Compos Part A Appl Sci Manuf 78:303–310. https://doi.org/10.1016/j.compositesa.2015.08.030

    Article  CAS  Google Scholar 

  77. Mathew G, Huh MY, Rhee JM et al (2004) Improvement of properties of silica-filled styrene-butadiene rubber composites through plasma surface modification of silica. Polym Adv Technol 15:400–408. https://doi.org/10.1002/pat.482

    Article  CAS  Google Scholar 

  78. Sengloyluan K, Sahakaro K, Dierkes WK, Noordermeer JWM (2014) Silica-reinforced tire tread compounds compatibilized by using epoxidized natural rubber. Eur Polym J 51:69–79. https://doi.org/10.1016/j.eurpolymj.2013.12.010

    Article  CAS  Google Scholar 

  79. Martin PJ, Brown P, Chapman AV, Cook S (2015) Silica-reinforced epoxidized natural rubber tire treads — performance and durability. Rubber Chem Technol 88:390–411. https://doi.org/10.5254/rct.15.85940

    Article  CAS  Google Scholar 

  80. Cataldo F (2002) Preparation of silica-based rubber compounds without the use of a silane coupling agent through the use of epoxidized natural rubber. Macromol Mater Eng 287:348–352. https://doi.org/10.1002/1439-2054(20020501)287:5%3c348::AID-MAME348%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  81. Silika T, Pengisi D, Zaeimoedin TZ et al (2014) Improving filler dispersion and physical properties of epoxidised natural rubber / silica compound by using dual fillers and coupling agent in mixing process (Meningkatkan Penyerakan Pengisi dan Sifat Sifat Fizikal Sebatian Getah Asli). Malaysian J Anal Sci 18:604–611

    Google Scholar 

  82. Surya I, Ismail H, Azura AR (2014) The comparison of alkanolamide and silane coupling agent on the properties of silica- fi lled natural rubber ( SMR-L ) compounds. Polym Test 40:24–32. https://doi.org/10.1016/j.polymertesting.2014.08.007

    Article  CAS  Google Scholar 

  83. Bian H, Chang T, Wang C et al (2021) Atomization combined with high-temperature sputtering method applied in latex compounding technology for preparation of natural rubber latex/silica composites. Polym Bull. https://doi.org/10.1007/s00289-020-03517-5

    Article  Google Scholar 

  84. Wolff S (1981) Parameters optimization of Silane-silica OTR compounds. Part 1: Variations of mixing temperature and time during the modification of silica with bis-3-triethoxysilupropyl-tetrasulphide. Rubber Chem Technol 55:967–989

    Article  Google Scholar 

  85. Poompradub S, Thirakulrati M, Prasassarakich P (2014) In situ generated silica in natural rubber latex via the sol e gel technique and properties of the silica rubber composites. Mater Chem Phys 144:122–131. https://doi.org/10.1016/j.matchemphys.2013.12.030

    Article  CAS  Google Scholar 

  86. Tangpasuthadol V, Intasiri A, Nuntivanich D et al (2008) Silica-reinforced natural rubber prepared by the sol – gel process of ethoxysilanes in rubber latex. Wiley Intersci 109:424–433. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  87. Prasertsri S, Rattanasom N (2012) Fumed and precipitated silica reinforced natural rubber composites prepared from latex system : Mechanical and dynamic properties. Polym Test 31:593–605. https://doi.org/10.1016/j.polymertesting.2012.03.003

    Article  CAS  Google Scholar 

  88. Bera A, Manna B, Ganguly D et al (2022) Pretreatment of hevea latex by sorbitol: improving the efficacy of silica dispersion by a biomimetic approach. ACS Appl Polym Mater 5:451. https://doi.org/10.1021/ACSAPM.2C01588/ASSET/IMAGES/LARGE/AP2C01588_0010.JPEG

    Article  Google Scholar 

  89. Yin C, Zhang Q, Gong D (2014) Preparation and properties of silica/styrene butadiene rubber masterbatches by latex co-coagulating technology. Polym Compos 35:1212–1219. https://doi.org/10.1002/PC.22770

    Article  CAS  Google Scholar 

  90. Konno Y (2018) Method for producing wet rubber masterbatch 1

  91. Ryu C, Yang JK, Park W et al (2020) Silica-filled NR compounds prepared by dry and wet masterbatches with different mixing times. J Appl Polym Sci 137:1–14. https://doi.org/10.1002/app.49548

    Article  CAS  Google Scholar 

  92. Sarkawi SS, Dierkes WK, Noordermeer JWM (2012) Natural rubber-silica combinations for low rolling resistance truck tire treads. Rubber World 247:26–31

    CAS  Google Scholar 

  93. Kim JK (2012) New silane coupling agents for silica tire tread compounds. J Elastomers Plast 44:549–562. https://doi.org/10.1177/0095244312439489

    Article  CAS  Google Scholar 

  94. Mahata D, Sarkar K, Mondal P et al (2020) Guayule natural rubber composites: impact of fillers on their cure characteristics, dynamic and mechanical behavior. Iran Polym J English Ed 29:393–401. https://doi.org/10.1007/S13726-020-00803-X

    Article  CAS  Google Scholar 

  95. Zhong B, Zeng X, Chen W et al (2019) Nonsolvent-assisted surface modification of silica by silane and antioxidant for rubber reinforcement. Polym Test 78:105949. https://doi.org/10.1016/j.polymertesting.2019.105949

    Article  CAS  Google Scholar 

  96. Andriani F, Surya I (2018) Silica dispersion enhancement in natural rubber composites utilising stearyl alcohol. J Phys Conf Ser 1116:042005. https://doi.org/10.1088/1742-6596/1116/4/042005

    Article  CAS  Google Scholar 

  97. Idrus SS, Ismail H, Palaniandy S (2011) Study of the effect of different shapes of ultrafine silica as fillers in natural rubber compounds. Polym Test 30:251–259. https://doi.org/10.1016/j.polymertesting.2010.10.002

    Article  CAS  Google Scholar 

  98. Wang J, Chen D (2013) Mechanical properties of natural rubber nanocomposites filled with thermally treated attapulgite 2013

  99. Rooj S, Das A, Thakur V et al (2010) Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater Des 31:2151–2156. https://doi.org/10.1016/j.matdes.2009.11.009

    Article  CAS  Google Scholar 

  100. Goswami M, Ghosh MM, Dalmiya MS et al (2020) A finite element method based comparative fracture assessment of carbon black and silica filled elastomers: Reinforcing efficacy of carbonaceous fillers in flexible composites. Polym Test 91:106856. https://doi.org/10.1016/j.polymertesting.2020.106856

    Article  CAS  Google Scholar 

  101. Ghorai S, Mondal D, Dhanania S, et al (2018) Reclaiming of waste guayule natural rubber vulcanizate—reclaim rubber for green tire applications: An approach for sustainable development. 51:193–210. https://doi.org/10.1177/0095244318780539

  102. Al-Hartomy OA, Al-Ghamdi AA, Farha Al Said SA et al (2016) Influence of carbon black/silica ratio on the physical and mechanical properties of composites based on epoxidized natural rubber. J Compos Mater 50:377–386. https://doi.org/10.1177/0021998315575336

    Article  CAS  Google Scholar 

  103. An D, Cui Y, He R et al (2023) Improved interfacial interactions of modified graphene oxide/natural rubber composites with the low heat build-up and good mechanical property for the green tire application. Polym Compos. https://doi.org/10.1002/PC.27444

    Article  Google Scholar 

  104. Wang X, Luo Z, Liang J, Zhong J (2023) Hybrid enhancement of silica and aramid pulp on improving performance and reducing dynamic heat generation of natural rubber composites. Polym Compos. https://doi.org/10.1002/PC.27511

    Article  Google Scholar 

  105. Ansarifar MA, Nuhawan R (2000) Filled natural rubber compounds. J Rubber Res 3:169–184

    CAS  Google Scholar 

  106. Stauch C, Ballweg T, Haas KH et al (2019) Silanization of silica nanoparticles and their processing as nanostructured micro-raspberry powders—a route to control the mechanical properties of isoprene rubber composites. Polym Compos 40:E732–E743. https://doi.org/10.1002/pc.24980

    Article  CAS  Google Scholar 

  107. Rattanasom N, Prasertsri S, Ruangritnumchai T (2009) Comparison of the mechanical properties at similar hardness level of natural rubber filled with various reinforcing-fillers. Polym Test 28:8–12. https://doi.org/10.1016/j.polymertesting.2008.08.004

    Article  CAS  Google Scholar 

  108. Surya I, Ismail H, Azura AR (2013) Alkanolamide as an accelerator, filler-dispersant and a plasticizer in silica-filled natural rubber compounds. Polym Test 32:1313–1321. https://doi.org/10.1016/j.polymertesting.2013.07.015

    Article  CAS  Google Scholar 

  109. Abhitha K, Kurian T (2017) Epoxidised natural rubber - a substitute for silane coupling agent in safe silica-filled natural rubber formulations VI:23–29

  110. Zhang Y, Liu Q, Zhang Q, Lu Y (2010) Gas barrier properties of natural rubber/kaolin composites prepared by melt blending. Appl Clay Sci 50:255–259. https://doi.org/10.1016/j.clay.2010.08.006

    Article  CAS  Google Scholar 

  111. Manna AK, Tripathy DK, De PP et al (1999) Bonding between epoxidized natural rubber and clay in presence of silane coupling agent. J Appl Polym Sci 72:1895–1903. https://doi.org/10.1002/(SICI)1097-4628(19990628)72:14%3c1895::AID-APP10%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  112. Wang Y, Liao L, Zhong J et al (2016) The behavior of natural rubber-epoxidized natural rubber-silica composites based on wet masterbatch technique. J Appl Polym Sci 133:1–9. https://doi.org/10.1002/app.43571

    Article  CAS  Google Scholar 

  113. Kaewsakul W, Sahakaro K, Dierkes WK, Noordermeer JWM (2016) Factors influencing the flocculation process in silica-reinforced natural rubber compounds. J Elastomers Plast 48:426–441. https://doi.org/10.1177/0095244315580456

    Article  CAS  Google Scholar 

  114. Mensah B, Agyei-Tuffour B, Nyankson E et al (2018) Preparation and characterization of rubber blends for industrial tire tread fabrication. Int J Polym Sci 2018:1–12. https://doi.org/10.1155/2018/2473286

    Article  CAS  Google Scholar 

  115. Thaptong P, Sae-Oui P, Sirisinha C (2016) Effects of silanization temperature and silica type on properties of silica-filled solution styrene butadiene rubber (SSBR) for passenger car tire tread compounds. J Appl Polym Sci 133:3–10. https://doi.org/10.1002/app.43342

    Article  CAS  Google Scholar 

  116. Fathurrohman MI. Better balance of silica-reinfoeced natural rubber tire tread compound properties by the use of montmorillonite with optimum surface modifier content. Rubber Chem Technol. https://doi.org/10.5254/rct.20.80407

  117. Sengloyluan K, Sahakaro K, Dierkes WK, Noordermeer JWM (2016) Reduced ethanol emissions by a combination of epoxidized natural rubber and silane coupling agent for silica-reinforced natural rubber-based tire treads. Rubber Chem Technol 89:419–435. https://doi.org/10.5254/rct.16.84813

    Article  CAS  Google Scholar 

  118. Qian M, Huang W, Wang J et al (2019) Surface treatment effects on the mechanical properties of silica carbon black reinforced natural rubber/butadiene rubber composites. Polymers (Basel). https://doi.org/10.3390/polym11111763

    Article  PubMed  PubMed Central  Google Scholar 

  119. Manoharan P, Naskar K (2016) Exploring a highly dispersible silica-elastomer composite for tire applications. J Appl Polym Sci. https://doi.org/10.1002/app.43531

    Article  Google Scholar 

  120. Yang SY, Liu L, Jia ZX et al (2014) Study on the structure-properties relationship of natural rubber/SiO2 composites modified by a novel multi-functional rubber agent. Express Polym Lett 8:425–435. https://doi.org/10.3144/expresspolymlett.2014.46

    Article  CAS  Google Scholar 

  121. Chaichua B, Prasassarakich P, Poompradub S (2009) In situ silica reinforcement of natural rubber by sol-gel process via rubber solution. J Sol-Gel Sci Technol 52:219–227. https://doi.org/10.1007/s10971-009-2019-x

    Article  CAS  Google Scholar 

  122. Arayapranee W, Rempel GL (2013) Effects of polarity on the filler-rubber interaction and properties of silica filled grafted natural rubber composites. J Polym 2013:1–9. https://doi.org/10.1155/2013/279529

    Article  Google Scholar 

  123. Prasertsri S, Rattanasom N (2011) Mechanical and dam** properties of silica/natural rubber composites prepared from latex system. Polym Test 30:515–526. https://doi.org/10.1016/j.polymertesting.2011.04.001

    Article  CAS  Google Scholar 

  124. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26:369–377. https://doi.org/10.1016/j.polymertesting.2006.12.003

    Article  CAS  Google Scholar 

  125. Thaptong P, Sae-Oui P, Sirisinha C (2017) Influences of styrene butadiene rubber and silica types on performance of passenger car radial tire tread. Rubber Chem Technol 90:699–713. https://doi.org/10.5254/rct.17.83724

    Article  CAS  Google Scholar 

  126. Saramolee P, Sahakaro K, Lopattananon N et al (2016) Compatibilization of silica-filled natural rubber compounds by combined effects of functionalized low molecular weight rubber and silane. J Elastomers Plast 48:145–163. https://doi.org/10.1177/0095244314568469

    Article  CAS  Google Scholar 

  127. Sirisinha C, Sae-oui P, Suchiva K, Thaptong P (2019) Properties of tire tread compounds based on functionalized styrene butadiene rubber and functionalized natural rubber. J Appl Polym Sci 48696:1–9. https://doi.org/10.1002/app.48696

    Article  CAS  Google Scholar 

  128. Martinopoulos G, Papakostas KT, Papadopoulos AM (2018) A comparative review of heating systems in EU countries, based on efficiency and fuel cost. Renew Sustain Energy Rev 90:687–699. https://doi.org/10.1016/J.RSER.2018.03.060

    Article  Google Scholar 

  129. Gray N, O’Shea R, Smyth B et al (2022) What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities? Renew Sustain Energy Rev 155:111886. https://doi.org/10.1016/J.RSER.2021.111886

    Article  CAS  Google Scholar 

  130. Ren X, Sancaktar E (2019) Use of fly ash as eco-friendly filler in synthetic rubber for tire applications. J Clean Prod 206:374–382. https://doi.org/10.1016/j.jclepro.2018.09.202

    Article  CAS  Google Scholar 

  131. Filled ES, Composites R, Vaikuntam SR et al (2020) Friction, abrasion and crack growth behavior of. 1–14

  132. Ju S-H (2022) Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and dam**. Renew Sustain Energy Rev 162:112458. https://doi.org/10.1016/J.RSER.2022.112458

    Article  Google Scholar 

  133. Sarkawi SS, Aziz AKC, Rahim RA et al (2016) Properties of epoxidized natural rubber tread compound: The hybrid reinforcing effect of silica and silane system. Polym Polym Compos 24:775–782. https://doi.org/10.1177/096739111602400914

    Article  CAS  Google Scholar 

  134. Choi S, Nah C, Jo B (2003) Properties of natural rubber composites reinforced with silica or carbon black : influence of cure accelerator content and filler dispersion 1389:1382–1389. https://doi.org/10.1002/pi.1232

    Article  CAS  Google Scholar 

  135. Kaewsakul W, Sahakaro K (2012) Optimization of mixing conditions for silica-reinforced natural rubber tire tread compounds. Rubber Chem Technol 85:277–294. https://doi.org/10.5254/rct.12.88935

    Article  CAS  Google Scholar 

  136. Veiga VDA, Rossignol TM, da Crespo J, S, Carli LN, (2017) Tire tread compounds with reduced rolling resistance and improved wet grip. J Appl Polym Sci 134:1–9. https://doi.org/10.1002/app.45334

    Article  CAS  Google Scholar 

  137. Vleugels N, Pille-Wolf W, Dierkes WK, Noordermeer JWM (2015) Understanding the influence of oligomeric resins on traction and rolling resistance of silica-reinforced tire treads. Rubber Chem Technol 88:65–79. https://doi.org/10.5254/rct.14.86947

    Article  CAS  Google Scholar 

  138. Kim K, Lee JY, Choi BJ et al (2014) Styrene-butadiene-glycidyl methacrylate terpolymer/silica composites: Dispersion of silica particles and dynamic mechanical properties. Compos Interfaces 21:685–702. https://doi.org/10.1080/15685543.2014.927720

    Article  CAS  Google Scholar 

  139. Paul I, Sandstrom H, Eaw H (2002) (12) United States Patent. 1

  140. Wang MJ, Zhang P, Mahmud K (2001) Carbon-silica dual phase filler, a new generation reinforcing agent for rubber: Part IX. Application to truck tire tread compound. Rubber Chem Technol 74:124–137. https://doi.org/10.5254/1.3547633

    Article  CAS  Google Scholar 

  141. Wang MJ, Kutsovsky Y, Zhang P et al (2002) New generation carbon-silica dual phase filler part I. Characterization and application to passenger tire. Rubber Chem Technol 75:247–263. https://doi.org/10.5254/1.3544975

    Article  CAS  Google Scholar 

  142. Data RUSA, Examiner P, Cain EJ et al (2001) (12) United States Patent. 1

  143. Riehm P, Unrau HJ, Gauterin F (2018) A model based method to determine rubber friction data based on rubber sample measurements. Tribol Int 127:37–46. https://doi.org/10.1016/j.triboint.2018.05.039

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Indian Institute of Technology Kharagpur and Apollo Tyres Pvt. Ltd, Chennai for their financial support and all kinds of facilities. The authors are also thankful to the Central Research Facility of IIT Kharagpur for carrying out the different characterizations of the samples. The author also likes to thank Mr. Rajesh De, Junior Technician/ Junior Laboratory Assistant, Rubber Technology Centre, IIT Kharagpur.

Funding

Indian Institute of Technology Kharagpur, Apollo Tyres Ltd. Global R&D Asia, IIT/SRIC/RT/TRF/2018-19/288, Abhijit Bera.

Author information

Authors and Affiliations

Authors

Contributions

Abhijit Bera: Conceptualization, Writing- Original draft preparation; Writing- Reviewing and Editing. Kajal Sarkar: Conceptualization, Writing- Original draft preparation. Debabrata Ganguly: Writing- Reviewing and Editing. Sanjoy Kumar Ghorai: Writing- Reviewing and Editing. Roumita Hore: Writing- Reviewing and Editing. Nikhil Kumar: Writing- Reviewing and Editing. S. K. P. Amarnath: Writing- Reviewing and Editing. Santanu Chattopadhyay: Supervision.

Corresponding author

Correspondence to S. Chattopadhyay.

Ethics declarations

Conflicts of interest

Authors declare that there are no conflicts of interest to declare.

Ethical approval

No testing on human or animal was carried out for this work therefore ethical approval is not applicable for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• This review highlights strategies on NR based environment friendly green compound.

• Summarized various renewable approaches of silica modification.

• Various generations of silane based coupling agents are discussed.

• Extensive coverage to overcome the dispersion problem of silica in NR compound.

• The review encompasses more than 155 salient articles spanning over 90 years.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3313 KB)

Supplementary file2 (DOCX 3313 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, A., Sarkar, K., Ganguly, D. et al. Recent advancements in silica filled natural rubber composite: A green approach to achieve smart properties in tyre. J Polym Res 31, 122 (2024). https://doi.org/10.1007/s10965-024-03956-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03956-y

Keywords

Navigation