Log in

Elevated Temperature Creep and Tensile Performance of Extruded Mg-10Ce Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Fitness-for-service testing on an extruded magnesium (Mg) alloy containing 10 wt.% cerium (Ce) has been conducted to understand how increased level of Ce affects the elevated temperature properties of Mg. Optical and scanning electron microscopy revealed a 39.4% area percentage of the Mg12Ce phase. The Mg12Ce intermetallic was formulated along the grain boundaries in semi-circular, asymmetrical and polyhedral morphologies. The Mg alloy was subjected to a room temperature (RT) and 200 °C tensile test and a 200 °C staircase creep test. At RT, the Mg-10Ce alloy exhibited an ultimate tensile strength (UTS), total elongation and toughness of 271 MPa, 0.95% and 1.6 MJ/m3, respectively. At 200 °C, the alloy exhibited a UTS, 0.2% yield strength, total elongation and toughness of 111 MPa, 103 MPa, 43 % and 39.8 MJ/m3, respectively. The alloy exhibits an increase in RT strength and 200°C toughness compared to conventional Mg alloys (i.e., AE44, WE43 etc.). The staircase creep experiment revealed steady-state creep rates of 1.88 x 10− 8, 3.40 × 10− 7  and 2.00 x 10− 6  s− 1 for applied loads of 22, 40 and 55 MPa, respectively. The stress exponent (4.88) calculated between 20 and 40 MPa indicated that power-law dislocation climb and activated cross-slip of the pyramidal planes (\(10\overline{1}1\)) are the two dominant creep mechanisms, which are typical for high temperature and low-stress applications. The stress exponent (5.57) calculated between 40 and 55 MPa indicated that power-law breakdown dislocation climb and activated cross-slip of the basal planes (0002) were the two dominant creep mechanisms. A stress exponent value above 5 indicated that the alloy was moved into the transitional phase of creep between high-temperature/low-load creep and high-temperature/high-load creep. The alloy’s strong basal (0002) texture and high volume fraction Mg12Ce intermetallic contributed to its poor creep performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. EPA, The 2021 EPA Automotive Trends Report,” Epa, no. March, pp. 1–12, 2021

  2. A.A. Luo, R.K. Mishra and A.K. Sachdev, High-Ductility Magnesium – Zinc – Cerium Extrusion Alloys, Scr. Mater., 2010, 64(2011), p 410–413. https://doi.org/10.1016/j.scriptamat.2010.10.045

    Article  CAS  Google Scholar 

  3. A.A. Luo, Recent Magnesium Alloy Development for Elevated Temperature Applications, Int. Mater. Rev., 2004, 49(1), p 13–30. https://doi.org/10.1179/095066004225010497

    Article  CAS  Google Scholar 

  4. S. You, Y. Huang, K.U. Kainer and N. Hort, Recent Research and Developments on Wrought Magnesium Alloys, J. Magnes. Alloy., 2017, 5(3), p 239–253. https://doi.org/10.1016/j.jma.2017.09.001

    Article  CAS  Google Scholar 

  5. A.A. Luo, Magnesium Casting Technology for Structural Applications, J. Magnes. Alloy., 2013, 1(1), p 2–22. https://doi.org/10.1016/j.jma.2013.02.002

    Article  CAS  Google Scholar 

  6. W.A. Curtin, R. Ahmad, B. Yin, and Z. Wu, Design of Ductile Rare-Earth-Free Magnesium Alloys, Magnes. Technol., pp. 19–24, 2020. https://doi.org/10.1007/978-3-030-36647-6_5

  7. S. Tekumalla, S. Seetharaman, A. Almajid and M. Gupta, Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review, Metals (Basel), 2014, 5(1), p 1–39. https://doi.org/10.3390/met5010001

    Article  Google Scholar 

  8. M. Pekguleryuz and M. Celikin, Creep Resistance in Magnesium Alloys, Int. Mater. Rev., 2010, 55(4), p 197–217. https://doi.org/10.1179/095066010X12646898728327

    Article  CAS  Google Scholar 

  9. D.G. Sediako and M.A. Gharghouri, Neutron Diffraction Measurements of Residual Stresses in Creep-Resistant Magnesium Alloys, Magnes. Technol., 2008, 0002, p 407–409.

    Google Scholar 

  10. M. El Mehtedi, S. Spigarelli, E. Evangelista and G. Rosen, Creep Behaviour of the ZM21 Wrought Magnesium Alloy, Mater. Sci. Eng. A, 2009, 510–511, p 403–406. https://doi.org/10.1016/j.msea.2008.04.102

    Article  CAS  Google Scholar 

  11. D. Sediako and S. Shook, “Application of Neutron Diffraction in In-situ Studies of Stress Evolution in High Temperature Creep Testing of Creep-Resistant Magnesium Alloys,” in Magnes. Technol. TMS, Feb. 15–19, 2009, pp. 255–259.

  12. D. Sediako, L. Bichler, M. Van Hanegem and S. Shook, Compressive Creep Properties of Wrought High Temperature Magnesium Alloys in Axial and Transverse Orientation - A Neutron Diffraction Study, Magnes. Technol., 2013 https://doi.org/10.1007/978-3-319-48150-0_2

    Article  Google Scholar 

  13. M. Fletcher, L. Bichler, D. Sediako and R. Klassen, Compressive Creep Behaviour of Extruded Mg Alloys at 150 °C, Magnes. Technol., 2011 https://doi.org/10.1002/9781118062029.ch17

    Article  Google Scholar 

  14. D. Sediako, S. Shook, S. Vogel and A. Sediako, Application of Neutron Diffraction in Characterization of Texture Evolution during High-Temperature Creep in Magnesium Alloys, Magnes. Technol., 2011 https://doi.org/10.1002/9781118062029.ch45

    Article  Google Scholar 

  15. X.J. Zhang and G.H. Geng, Research of Resistance to High Temperature and Creep Resistant Magnesium Alloy, Adv. Mater. Res., 2013, 750–752, p 715–720. https://doi.org/10.4028/www.scientific.net/AMR.750-752.715

    Article  CAS  Google Scholar 

  16. D. Weiss, A.A. Kaya, E. Aghion and D. Eliezer, Microstructure and Creep Properties of a Cast Mg-1.7%wt Rare Earth-0.3%wt Mn Alloy, J. Mater. Sci., 2002, 37(24), p 5371–5379. https://doi.org/10.1023/A:1021001813867

    Article  CAS  Google Scholar 

  17. K. Milička, J. Čadek and P. Ryš, High Temperature Creep Mechanisms in Magnesium, Acta Metall., 1970, 18(10), p 1071–1082. https://doi.org/10.1016/0001-6160(70)90005-2

    Article  Google Scholar 

  18. M. Celikin, D. Sediako, and M. Pekguleryuz, “Texture change in pure Mg and Mg-1.5wt%Mn casting alloy during compressive creep-deformation,” in Magnes. Technol. TMS, Feb. 14–18, 2010, pp. 249–251.

  19. Y.L. Xu, L. Wang, M. Huang, F. Gensch, K.U. Kainer and N. Hort, The Effect of Solid Solute and Precipitate Phase on Young’s Modulus of Binary Mg–RE Alloys, Adv. Eng. Mater., 2018, 20(10), p 1–9. https://doi.org/10.1002/adem.201800271

    Article  CAS  Google Scholar 

  20. D. Weiss, Improved High-Temperature Aluminum Alloys Containing Cerium, J. Mater. Eng. Perform., 2019, 28(4), p 1903–1908. https://doi.org/10.1007/s11665-019-3884-2

    Article  CAS  Google Scholar 

  21. Y. Chino, M. Kado and M. Mabuchi, Enhancement of Tensile Ductility and Stretch Formability of Magnesium by Addition of 0.2 wt.%(0.035 at%)Ce, Mater. Sci. Eng. A, 2008, 494(1–2), p 343–349. https://doi.org/10.1016/j.msea.2008.04.059

    Article  CAS  Google Scholar 

  22. T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis and J.F. Nie, The Effect of Alloy Composition on the Microstructure and Tensile Properties of Binary Mg-Rare Earth Alloys, Intermetallics, 2009, 17(7), p 481–490. https://doi.org/10.1016/j.intermet.2008.12.009

    Article  CAS  Google Scholar 

  23. S.H. Park, B.S. You, R.K. Mishra and A.K. Sachdev, Effects of Extrusion Parameters on the Microstructure and Mechanical Properties of Mg-Zn-(Mn)-Ce/Gd Alloys, Mater. Sci. Eng. A, 2014, 598, p 396–406. https://doi.org/10.1016/j.msea.2014.01.051

    Article  CAS  Google Scholar 

  24. R.K. Mishra, A.K. Gupta, P. Rao Rama, A.K. Sachdev, A.M. Kumar and A.A. Luo, Influence of cerium on texture and ductility of magnesium extrusions, Essential Readings in Magnesium Technology. S.N. Mathaudhu, A.A. Luo, N.R. Neelameggham, E.A. Nyberg, W.H. Sillekens Ed., Springer, Cham, 2016

    Google Scholar 

  25. A.A. Luo, W. Wenyun, R.K. Mishra, L. **, A.K. Sachdev and W. Ding, Microstructure and Mechanical Properties of Extruded Magnesium-Aluminum-Cerium Alloy Tubes, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41(10), p 2662–2674. https://doi.org/10.1007/s11661-010-0278-3

    Article  CAS  Google Scholar 

  26. D. Zhao et al., A comparative study on the microstructures and mechanical properties of the Mg-xCa/Mn/Ce alloys and pure Mg, Mater. Sci. Eng. A, 2021 https://doi.org/10.1016/j.msea.2020.140508

    Article  Google Scholar 

  27. N. Hort, Y. Huong and K.U. Kainer, Intermetallics in Magnesium Alloys, Adv. Eng. Mater., 2006, 8(4), p 235–240. https://doi.org/10.1002/adem.200500202

    Article  CAS  Google Scholar 

  28. A. Ru Wu and C. Qing **a, Study of the Microstructure and Mechanical Properties of Mg-rare Earth Alloys, Mater. Des., 2007, 28(6), p 1963–1967.

    Article  Google Scholar 

  29. ASTM, Standard Guide for Preparation of Metallographic Specimens, ASTM Copyright, ASTM International, West Conshohocken, PA. pp. 1–12, 2017, doi: https://doi.org/10.1520/E0003-11R17.1

  30. Paul W. Lisowski and Kurt F. Schoenberg, The Los Alamos Neutron Science Center, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 2006, 562(2), p 910–914. https://doi.org/10.1016/j.nima.2006.02.178

    Article  CAS  Google Scholar 

  31. H.R. Wenk, L. Lutterotti and S. Vogel, Texture Analysis with the New HIPPO TOF Diffractometer, Nucl. Instruments Methods Phys. Res. A, 2003, 515(3), p 575–588. https://doi.org/10.1016/j.nima.2003.05.001

    Article  CAS  Google Scholar 

  32. S. Takajo and S.C. Vogel, Determination of Pole Figure Coverage for Texture Measurements with Neutron Time-of-Flight Diffractometers, J. Appl. Crystallogr., 2018, 51(2005), p 895–900. https://doi.org/10.1107/S1600576718007732

    Article  CAS  Google Scholar 

  33. L. Lutterotti, “MAUD tutorial - Hippo Texture Analysis Wizard.” University of Trento, Trento, Italy, Oct. 2007. Available from http://maud.radiographema.eu/ [Online]. Accessed Dec 2, 2021.

  34. ASTM, E8 / E8M-21, Standard Test Methods for Tension Testing of Metallic Materials, ASTM Copyright, ASTM International, West Conshohocken, PA. pp. 1–30, 2021, doi: https://doi.org/10.1520/E0008

  35. L. **, K. Liu and X.G. Chen, Evolution of Dispersoids and Their Effects on Elevated-Temperature Strength and Creep Resistance in Al-Si-Cu 319 Cast Alloys with Mn and Mo Additions, Mater. Sci. Eng. A, 2020, 770, p 1–11. https://doi.org/10.1016/j.msea.2019.138554

    Article  CAS  Google Scholar 

  36. M.T. Di Giovanni, E. Cerri, D. Casari, M. Merlin, L. Arnberg and G.L. Garagnani, The Influence of Ni and V Trace Elements on High-Temperature Tensile Properties and Aging of A356 Aluminum Foundry Alloy, Metall. Mater. Trans. A, 2016, 47(5), p 2049–2057. https://doi.org/10.1007/s11661-016-3366-1

    Article  CAS  Google Scholar 

  37. J. Stroh, D. Sediako and D. Weiss, The Effects of Iron-Bearing Intermetallics on the Fitness-for-Service Performance of a Rare-Earth-Modified A356 Alloy for Next Generation Automotive Powertrains, Metals (Basel), 2021, 11(788), p 1–20. https://doi.org/10.3390/met11050788

    Article  CAS  Google Scholar 

  38. H. Hu, A. Yu, N. Li and J.E. Allison, Potential Magnesium Alloys for High Temperature Die Cast Automotive Applications: A Review, Mater. Manuf. Process., 2003, 18(5), p 687–717. https://doi.org/10.1081/AMP-120024970

    Article  CAS  Google Scholar 

  39. D. G. Sediako, W. Kasprzak, F. Czerwinski, A. M. Nabawy, and A. R. Farkoosh, High Temperature Creep Evolution in Al-Si Alloys Developed for Automotive Powertrain Applications: A neutron In-situ Study on HKL-Plane Creep Response, Light Metals, 2016, pp. 131–136. https://doi.org/10.1007/978-3-319-48251-4_23

  40. M. Fletcher, L. Bichler and D. Sediako, The role of Intermetallics on Creep Behaviour of Extruded Magnesium Alloys, Magnes. Technol., 2012 https://doi.org/10.1007/978-3-319-48203-3_80

    Article  Google Scholar 

  41. M. Celikin, A.A. Kaya, R. Gauvin and M. Pekguleryuz, Effects of Manganese on the Microstructure and Dynamic Precipitation in Creep-Resistant cast Mg-Ce-Mn Alloys, Scr. Mater., 2012, 66(10), p 737–740. https://doi.org/10.1016/j.scriptamat.2012.01.043

    Article  CAS  Google Scholar 

  42. D. Panda, R.K. Sabat, S. Suwas, V.D. Hiwarkar and S.K. Sahoo, Texture Weakening in Pure Magnesium during Grain Growth, Philos. Mag., 2019, 99(11), p 1362–1385. https://doi.org/10.1080/14786435.2019.1581382

    Article  CAS  Google Scholar 

  43. O. Engler and V. Randle, Introduction to texture analysis: Macrotexture, Microtexture and Orientation Map**. Amsterdam: Gordon and Breach Science Publishers, 2000

    Google Scholar 

  44. Y.N. Wang and J.C. Huang, Texture Analysis in Hexagonal Materials, Mater. Chem. Phys., 2003, 81(1), p 11–26. https://doi.org/10.1016/S0254-0584(03)00168-8

    Article  CAS  Google Scholar 

  45. Z. Jiang, B. Jiang, Y. Zeng, J. Dai and F. Pan, Role of Al Modification on the Microstructure and Mechanical Properties of as-cast Mg-6Ce Alloys, Mater. Sci. Eng. A, 2015, 645, p 57–64. https://doi.org/10.1016/j.msea.2015.08.002

    Article  CAS  Google Scholar 

  46. D. Griffiths, Explaining Texture Weakening and Improved Formability in Magnesium Rare Earth Alloys, Mater. Sci. Technol. (United Kingdom), 2015, 31(1), p 10–24. https://doi.org/10.1179/1743284714Y.0000000632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitry Sediako.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozakevich, J., Stroh, J., Sediako, D. et al. Elevated Temperature Creep and Tensile Performance of Extruded Mg-10Ce Alloy. J. of Materi Eng and Perform 32, 2758–2765 (2023). https://doi.org/10.1007/s11665-022-06935-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06935-w

Keywords

Navigation