Log in

The Mechanical and Microstructural Changes of Sn-Ag-Bi Solders with Cooling Rate and Bi Content Variations

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the influence of cooling rate and Bi addition on the microstructure evolution and mechanical properties of Sn-3.5Ag alloy. A series of Sn-3.5Ag-xBi solders has been fabricated with Bi content in the range of 0.5-3.5 wt.%. After solution heat treatment at 170 °C for 24 h and subsequent aging heat treatment at 100 °C for 2 h, samples were divided into two groups. One group was rapidly quenched into iced water (water quenching) for the fast cooling rate (20 °C/s), while the second group was slowly cooled (furnace cooling) in the furnace for the slow cooling rate (0.2 °C/s) after the furnace reflow. The microstructural evolutions of the present solders have been investigated using x-ray diffraction and scanning electron microscopy. The microhardness was measured to correlate the mechanical properties to alloy compositions and cooling rate. It was found that the microhardness of Sn-3.5Ag-xBi solders increased with increasing cooling rate. The indentation creep curves have been evaluated from the obtained microhardness values. Results revealed the steady-state creep rate decreased with increasing Bi content exhibiting an anomalous behavior at 2.5Bi. The reason for improved creep resistance of Sn-3.5Ag-xBi solders is the result of the combination of the solid solution strengthening and precipitation strengthening of Bi. The mean values of stress exponent indicated that the operative creep mechanism is dislocation climb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W.-Q. **ng, X.-Y. Yu, H. Li, L. Ma, W. Zuo, P. Dong, W.-X. Wang, and M. Ding, Effect of Nano Al2O3 Additions on the Interfacial Behavior and Mechanical Properties of Eutectic Sn-9Zn Solder on Low-Temperature Wetting and Soldering of 6061 Aluminum alloys, J. Alloys Compd., 2017, 695, p 574–582

    Article  Google Scholar 

  2. A.F. Abd El-Rehim and H.Y. Zahran, Investigation of Microstructure and Mechanical Properties of Sn-xCu Solder Alloys, J. Alloys Compd., 2017, 695, p 3666–3673

    Article  Google Scholar 

  3. M. Yang, H. Ji, S. Wang, Y.-H. Ko, C.-W. Lee, J. Wu, and M. Li, Effects of Ag Content on the Interfacial Reactions Between Liquid Sn-Ag-Cu Solders and Cu Substrates During Soldering, J. Alloys Compd., 2016, 679, p 18–25

    Article  Google Scholar 

  4. A.F. Abd El-Rehim and H.Y. Zahran, Effect of Aging Treatment on Microstructure and Creep Behavior of Sn-Ag and Sn-Ag-Bi Solder Alloys, Mater. Sci. Technol., 2014, 30, p 434–438

    Article  Google Scholar 

  5. W.R. Osório, D.R. Leiva, L.C. Peixoto, L.R. Garcia, and A. Garcia, Mechanical Properties of Sn-Ag Lead-Free Solder Alloys Based on the Dendritic Array and Ag3Sn Morphology, J. Alloys Compd., 2013, 562, p 194–204

    Article  Google Scholar 

  6. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, T. Ariga, and F.X. Che, Effect of Ag Content and the Minor Alloying Element Fe on the Mechanical Properties and Microstructural Stability of Sn-Ag-Cu Solder Alloy Under High-Temperature Annealing, J. Electron. Mater., 2013, 42, p 470–484

    Article  Google Scholar 

  7. M. He, N. De Leon, and V.L. Acoff, Effect of Bi on the Microstructure and Tensile Behavior of Sn-3.7Ag Solders, Solder. Surf. Mt. Technol., 2010, 22, p 4–9

    Article  Google Scholar 

  8. F. Ochoa, J.J. Williams, and N. Chawla, Effects of Cooling Rate on the Microstructure and Tensile Behavior of a Sn-3.5wt% Ag Solder, J. Electron. Mater., 2003, 32, p 1414–1420

    Article  Google Scholar 

  9. F. Ochoa, X. Deng, and N. Chawala, Effects of Cooling Rate on Creep Behavior of a Sn-3.5Ag Alloy, J. Electron. Mater., 2004, 33, p 1596–1607

    Article  Google Scholar 

  10. S.-K. Seo, S.K. Kang, D.-Y. Shih, and H.M. Lee, An investigation of Microstructure and Microhardness of Sn-Cu and Sn-Ag Solders as Functions of Alloy Composition and Cooling Rate, J. Electron. Mater., 2009, 38, p 257–265

    Article  Google Scholar 

  11. M. Kerr and N. Chawla, Creep Deformation Behavior of Sn-3.5Ag solder/Cu Couple at Small Length Scales, Acta Mater., 2004, 52, p 4527–4535

    Article  Google Scholar 

  12. M. Kerr and N. Chawla, Creep Deformation Behavior of a Sn-3.5Ag Solder at Small-Length Scale, JOM, 2004, 56, p 50–54

    Article  Google Scholar 

  13. J.H.L. Pang, L. Xu, X.Q. Shi, W. Zhou, and S.L. Ngoh, Intermetallic Growth Studies on Sn-Ag-Cu Lead-Free Solder Joints, J. Electron. Mater., 2004, 33, p 1219–1225

    Article  Google Scholar 

  14. W.K. Choi, J.H. Kim, S.W. Jeong, and H.M. Lee, Interfacial Microstructure and Joint Strength of Sn-3.5Ag-X (X = Cu, In, Ni) Solder Joint, J. Mater. Res., 2002, 17, p 43–51

    Article  Google Scholar 

  15. M. Kamal, E.S. Gouda, and L.K. Marei, Effect of Bi-Content on Hardness and Micro-Creep Behavior of Sn-3.5Ag Rapidly Solidified Alloy, Cryst. Res. Technol., 2009, 44, p 1308–1312

    Article  Google Scholar 

  16. M. He and V.L. Acoff, Effect of Reflow and Thermal Aging on the Microstructure and Microhardness of Sn-3.7Ag-xBi Solder Alloys, J. Electron. Mater., 2006, 35, p 2098–2106

    Article  Google Scholar 

  17. H. Ma and J.C. Suhling, A Review of Mechanical Properties of Lead-Free Solders for Electronic Packaging, J. Mater. Sci., 2009, 44, p 1141–1158

    Article  Google Scholar 

  18. P.M. Sargent and M.F. Ashby, Indentation Creep, Mater. Sci. Technol., 1992, 8, p 594–601

    Article  Google Scholar 

  19. A.G. Atkins, The Science of Hardness Testing and its Research Applications, ASM, Metal Park, 1971, p 223

    Google Scholar 

  20. X. Liu, M. Huang, Y. Zhao, C.M.L. Wu, and L. Wang, The Adsorption of Ag3Sn Nanoparticles on Cu-Sn Intermetallic Compounds of Sn-3Ag-0.5Cu/Cu During Soldering, J. Alloys Compd., 2010, 492, p 433–438

    Article  Google Scholar 

  21. R.S. Sidhu and N. Chawla, Three-Dimensional (3D) Visualization and Microstructure Based Modeling of Deformation in a Sn-rich Solder, Scr. Mater., 2006, 54, p 1627–1631

    Article  Google Scholar 

  22. J.M. Song, J.J. Lin, C.F. Huang, and H.Y. Chuang, Crystallization, Morphology and Distribution of Ag3Sn in Sn-Ag-Cu Alloys and Their Influence on the Vibration Fracture Properties, Mater. Sci. Eng. A, 2007, 466, p 9–17

    Article  Google Scholar 

  23. J. Shen, Y.C. Liu, Y.J. Han, H.X. Gao, C. Wei, and Y.Q. Yang, Effects of Cooling Rates on Microstructure and Microhardness of Lead-Free Sn-35% Ag Solders, Trans. Nonferr. Met. Soc. China, 2006, 16, p 59–64

    Article  Google Scholar 

  24. D.W. Henderson, T. Gosselin, and A. Sarkhel, Ag3Sn Plate Formation in the Solidification of Near Ternary Eutectic Sn-Ag-Cu Alloys, J. Mater. Res., 2002, 17, p 2755–2778

    Article  Google Scholar 

  25. D.C. Lin, T.S. Srivatsan, G.X. Wang, and R. Kovacevic, Microstructural Development in a Rapidly Cooled Eutectic Sn-3.5% Ag Solder Reinforced with Copper Powder, Powder Technol., 2006, 166, p 38–46

    Article  Google Scholar 

  26. J.G. Maveety, O. Liu, J. Vijayen, F. Hua, and E.A. Sanchez, Effect of Cooling Rate on Microstructure and Shear Strength of Pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-37Pb Solders, J. Electron. Mater., 2004, 33, p 1355–1362

    Article  Google Scholar 

  27. J.-W. Choi, H.-S. Cha, and T.-S. Oh, Mechanical Properties and Shear Strength of Sn-3.5Ag-Bi Solder Alloys, Mater. Trans., 2002, 43, p 1864–1867

    Article  Google Scholar 

  28. X. Liu, M. Huang, Y. Zhao, C.M.L. Wu, and L. Wang, The adsorption of Ag3Sn Nanoparticles on Cu-Sn Intermetallic Compounds of Sn-3Ag-0.5Cu/Cu During Soldering, J. Alloys Compd., 2010, 492, p 433–438

    Article  Google Scholar 

  29. K. Zeng and K.N. Tu, Six Cases of Reliability Study of Pb-Free Solder Joints in Electronic Packaging Technology, Mater. Sci. Eng. R, 2002, 38, p 55–105

    Article  Google Scholar 

  30. K.P. Wu, N. Wade, S. Yamada, and K. Miyahara, Effect of Variation of Microstructure on the Creep and Rupture Strengths of a Sn-3.5% Ag Lead-Free Solder Alloy, Z. Metall., 2004, 95, p 185–188

    Article  Google Scholar 

  31. W. Yang, L.E. Felton, and R.W. Messler, The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints, J. Electron. Mater., 1995, 24, p 1465–1472

    Article  Google Scholar 

  32. S.W. Shine and J. Yu, Creep Deformation of Microstructurally Stable Sn-3.5Ag-xBi Solders, J. Electron. Mater., 2005, 34, p 188–195

    Article  Google Scholar 

  33. Z. Lai and D. Ye, Effect of Cooling Method and Aging Treatment on the Microstructure and Mechanical Properties of Sn-10Bi Solder Alloy, J. Mater. Sci. Mater. Electron., 2016, 27, p 1398–1407

    Article  Google Scholar 

  34. A.R. Fix, W. Nüchter, and J. Wilde, Microstructural Changes of Lead-Free Solder Joints During Long-Term Ageing, Thermal Cycling and Vibration Fatigue, Solder. Surf. Mt. Technol., 2008, 20, p 13–21

    Article  Google Scholar 

  35. S.-K. Seo, S.K. Kang, D.-Y. Shih, and H.M. Lee, The Evolution of Microstructure and Microhardness of Sn-Ag and Sn-Cu Solders During High-Temperature Aging, Microelectron. Reliab., 2009, 49, p 288–295

    Article  Google Scholar 

  36. M.M. Arafat, A.S.M.A. Haseeb, and M.R. Johan, Interfacial Reaction and Dissolution Behavior of Cu Substrate in Molten Sn-3.8Ag-0.7Cu in the Presence of Mo Nanoparticles, Solder. Surf. Mt. Technol., 2011, 23, p 140–149

    Article  Google Scholar 

  37. D.C. Lin, G.X. Wang, T.S. Srivatsan, and M. Petraroli, Influence of Titanium Dioxide Nanopowder Addition on Microstructural Development and Hardness of Tin-Lead Solder, Mater. Lett., 2003, 57, p 3193–3198

    Article  Google Scholar 

  38. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Creep Deformation Characteristics of Tin and Tin-Based Electronic Solder Alloys, Metall. Mater. Trans. A, 2005, 36, p 99–105

    Article  Google Scholar 

  39. Q. **ao and W.D. Armstrong, Tensile Creep and Microstructural Characterization of Bulk Sn3.9Ag0.6Cu Lead-Free Solder, J. Electron. Mater., 2005, 34, p 196–211

    Article  Google Scholar 

  40. F.R.N. Nabarro, Creep at Very Low Rates, Metall. Mater. Trans. A, 2002, 33, p 213–2018

    Article  Google Scholar 

  41. M.E. Kassner and M.T. Pérez-Prado, Fundamentals of Creep in Metals and Alloys, 1st ed., Elsevier, Amsterdam, Boston, 2004, p 13–15

    Book  Google Scholar 

Download references

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (G.R.P-260-38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Zahran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Rehim, A.F., Zahran, H.Y. & AlFaify, S. The Mechanical and Microstructural Changes of Sn-Ag-Bi Solders with Cooling Rate and Bi Content Variations. J. of Materi Eng and Perform 27, 344–352 (2018). https://doi.org/10.1007/s11665-017-3104-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3104-x

Keywords

Navigation