Log in

Impact Behavior of A356 Foundry Alloys in the Presence of Trace Elements Ni and V

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, the impact behavior of unmodified A356 alloys with the addition of Ni or V in as-cast and T6 heat-treated conditions was assessed. Charpy V-notched specimens obtained from sand and permanent mold casting showed low total absorbed energy average values (W t < 2 J). SEM analysis of fracture profiles and surfaces indicated a Si-driven crack propagation with a predominant transgranular fracture mode. Occasionally, intergranular contributions to fracture were detected in the permanent mold cast alloys due to the locally finer microstructure. Concurrent mechanisms related to the chemical composition, solidification conditions and heat treatment were found to control the impact properties of the alloys. While the trace element Ni exerted only minor effects on the impact toughness of the A356 alloy, V had a strong influence: (i) V-containing sand cast alloys absorbed slightly higher impact energies compared to the corresponding A356 base alloys; (ii) in the permanent mold cast alloys, V in solid solution led to a considerable loss of ductility, which in turn decreased the total absorbed energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Apelian, S. Shivkumar, and G. Sigworth, Fundamental Aspects of Heat Treatment of Cast Al-Si-Mg Alloys, AFS Trans., 1989, 97, p 727–742

    Google Scholar 

  2. E. Sjölander and S. Seifeddine, The Heat Treatment of Al-Si-Cu-Mg Casting Alloys, J. Mater. Process. Technol., 2010, 210(10), p 1249–1259

    Article  Google Scholar 

  3. K.T. Kashyap, S. Murali, K.S. Raman, and K.S.S. Murthy, Casting and Heat Treatment Variables of Al-7Si-Mg Alloy, Mater. Sci. Technol., 1993, 9(3), p 189–204

    Article  Google Scholar 

  4. L. Pedersen and L. Arnberg, The Effect of Solution Heat Treatment and Quenching Rates on Mechanical Properties and Microstructures in AlSiMg Foundry Alloys, Metall. Mater. Trans. A, 2001, 32(3), p 525–532

    Article  Google Scholar 

  5. M. Zhu, Z. Jian, G. Yang, and Y. Zhou, Effects of T6 Heat Treatment on the Microstructure, Tensile Properties, and Fracture Behavior of the Modified A356 Alloys, Mater. Des., 2012, 36, p 243–249

    Article  Google Scholar 

  6. D.L. Zhang, L.H. Zheng, and D.H. StJohn, Effect of a Short Solution Treatment Time on Microstructure and Mechanical Properties of Modified Al-7wt.%Si-0.3wt.%Mg alloy, J. Light Met., 2002, 2(1), p 27–36

    Article  Google Scholar 

  7. J.A. Taylor, D.H. St John, L. Zheng, G.A. Edwards, J. Barresi, and M.J. Couper, Solution Treatment Effects in Al-Si-Mg Casting Alloys: Part I. Intermetallic Phases, Alum. Trans., 2001, 4–5, p 95–110

    Google Scholar 

  8. S. Murali, K.S. Raman, and K.S.S. Murthy, Effect of Magnesium, Iron (Impurity) and Solidification Rates on the Fracture Toughness of Al-7Si-0.3 Mg Casting Alloy, Mater. Sci. Eng. A, 1992, 151(1), p 1–10

    Article  Google Scholar 

  9. Z. Ma, F.H. Samuel, A.M. Samuel, H.W. Doty, and S. Valtierra, Effect of Fe Content and Cooling Rate on the Impact Toughness of Cast 319 and 356 Aluminum Alloys, AFS Trans., 2003, 111, p 255–266

    Google Scholar 

  10. S. Shivkumar, L. Wang, and C. Keller, Impact Properties of A356-T6 Alloys, J. Mater. Eng. Perform., 1994, 3(1), p 83–90

    Article  Google Scholar 

  11. M. Merlin, G. Timelli, F. Bonollo, and G.L. Garagnani, Impact Behaviour of A356 Alloy for Low-Pressure Die Casting Automotive Wheels, J. Mater. Process. Technol., 2009, 209(2), p 1060–1073

    Article  Google Scholar 

  12. D. Casari, M. Merlin, and G.L. Garagnani, A Comparative Study on the Effects of Three Commercial Ti-B-Based Grain Refiners on the Impact Properties of A356 Cast Aluminium Alloy, J. Mater. Sci., 2013, 48(12), p 4365–4377

    Article  Google Scholar 

  13. O. Elsebaie, A.M. Samuel, and F.H. Samuel, Effects of Sr-Modification, Iron-Based Intermetallics and Aging Treatment on the Impact Toughness of 356 Al-Si-Mg Alloy, J. Mater. Sci., 2011, 46(9), p 3027–3045

    Article  Google Scholar 

  14. G. Jha, S. Ningileri, X. Li, and R. Bowers, The Challenge of Effectively Utilizing Trace Elements, Impurities in a Varying Raw Materials Market, Light Met., 2013, 2013, p 929–934

    Google Scholar 

  15. J. Grandfield, L. Sweet, C. Davidson, J. Mitchell, A. Beer, S. Zhu, X. Chen, and M. Easton, An Initial Assessment of the Effects of Increased Ni and V Content in A356 and AA6063 Alloys, Light Metals, 2013, 2013, p 39–45

    Google Scholar 

  16. D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, and G.L. Garagnani, The Effect of Ni and V Trace Elements on the Mechanical Properties of A356 Aluminium Foundry Alloy in As-Cast and T6 Heat Treated Conditions, Mater. Sci. Eng. A, 2014, 610, p 414–426

    Article  Google Scholar 

  17. Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, H.W. Doty, and S. Valtierra, Parameters Controlling the Performance of AA319-Type Alloys Part II. Impact Properties and Fractography, Mater. Sci. Eng. A, 2004, 367(1–2), p 111–122

    Article  Google Scholar 

  18. N.D. Alexopoulos and A. Stylianos, Impact Mechanical Behaviour of Al-7Si-Mg (A357) Cast Aluminum Alloy. The Effect of Artificial Aging, Mater. Sci. Eng. A, 2011, 528(16–20), p 6303–6312

    Article  Google Scholar 

  19. N.D. Alexopoulus, A. Stylianos, and J. Campbell, Dynamic fracture toughness of Al-7Si-Mg (A357) aluminum alloy, Mech. Mater., 2013, 58, p 55–68

    Article  Google Scholar 

  20. T.H. Ludwig, P.L. Schaffer, and L. Arnberg, Influence of Some Trace Elements on Solidification Path and Microstructure of Al-Si Foundry Alloys, Metall. Mater. Trans. A, 2013, 44(8), p 3783–3796

    Article  Google Scholar 

  21. J.A. Taylor, D.H. St John, J. Barresi, and M.J. Couper, Influence of Mg Content on the Microstructure and Solid Solution Chemistry of Al-7%Si-Mg Casting Alloys During Solution Treatment, Mater. Sci. Forum, 2000, 331–337, p 277–282

    Article  Google Scholar 

  22. Q.G. Wang, Microstructural Effects on the Tensile and Fracture Behavior of Aluminum Casting Alloys A356/357, Metall. Mater. Trans. A, 2003, 34(12), p 2887–2899

    Article  Google Scholar 

  23. Y. Harada, S. Tamura, and S. Kumai, Effects of High-Temperature Solutionizing on Microstructure and Tear Toughness of A356 Cast Aluminum Alloy, Mater. Trans., 2011, 52(5), p 848–855

    Article  Google Scholar 

  24. Q.G. Wang and C.H. Cáceres, The Fracture Mode in Al-Si-Mg Casting Alloys, Mater. Sci. Eng. A, 1998, 241(1–2), p 72–82

    Article  Google Scholar 

  25. E. Ogris, A. Wahlen, H. Luchinger, and P.J. Uggowitzer, On the Silicon Spheroidization in Al-Si Alloys, J. Light Met., 2002, 2(4), p 263–269

    Article  Google Scholar 

  26. C.H. Cáceres, C.J. Davidson, and J.R. Griffiths, The Deformation and Fracture Behaviour of an Al-Si-Mg Casting Alloy, Mater. Sci. Eng. A, 1995, 197(2), p 171–179

    Article  Google Scholar 

  27. W.H. Hunt, Jr., J.R. Brockenbrough, and P.E. Magnusen, An Al-Si-Mg Composite Model System: Microstructural Effects on Deformation and Damage Evolution, Scripta Metall. Mater., 1991, 25(1), p 15–20

    Article  Google Scholar 

  28. ASM International, ASM Handbook Vol. 8—Mechanical Testing and Evaluation, 1st ed., ASM International, Materials Park, 2000, p 1357

    Google Scholar 

  29. T. Kobayashi and M. Niinomi, Fracture Toughness and Fatigue Characteristics of Aluminum Casting Alloy, J. Jpn. Inst. Met., 1991, 41, p 398–405

    Article  Google Scholar 

  30. N.A. Belov, D.G. Eskin, and A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, 1st ed., Elsevier, Amsterdam, 2005, p 379–380

    Google Scholar 

  31. F. Paray, B. Kulunk, and J.E. Gruzleski, Impact Properties of Al-Si Foundry Alloys, Int. J. Cast Met. Res., 2000, 13, p 17–37

    Google Scholar 

  32. S.S. Sreeja Kumari, R.M. Pillai, T.P.D. Rajan, and B.C. Pai, Effects of Individual and Combined Additions of Be, Mn, Ca and Sr on the Solidification Behaviour, Structure and Mechanical Properties of Al-7Si-0.3Mg-0.8Fe Alloy, Mater. Sci. Eng. A, 2007, 460–461, p 561–573

    Article  Google Scholar 

  33. G.E. Dieter, Mechanical Metallurgy, Chap. 6, 3rd ed., McGraw-Hill, New York, 1988

  34. D. Lados, D. Apelian, and L. Wang, Solution Treatment Effects on Microstructure and Mechanical Properties of Al-(1 to 13 Pct)Si-Mg Cast Alloys, Metall. Mater. Trans. B, 2011, 42(1), p 171–180

    Article  Google Scholar 

Download references

Acknowledgments

This research activity was supported by the “Bando Giovani Ricercatori – Fondi 5x1000 anno 2010 e Fondi Unicredit 2013” of the University of Ferrara. In addition, the authors gratefully acknowledge Hydro Aluminium AS (Norway) for financial support. Thanks are also due to Hermann Hovland from Sør-Norge Aluminium AS (Norway) for the generous supply of master alloys and to Arne Nordmark and Kurt Sandaunet from SINTEF Materials and Chemistry (Norway) for their help during the manufacturing of castings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Casari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casari, D., Ludwig, T.H., Merlin, M. et al. Impact Behavior of A356 Foundry Alloys in the Presence of Trace Elements Ni and V. J. of Materi Eng and Perform 24, 894–908 (2015). https://doi.org/10.1007/s11665-014-1355-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1355-3

Keywords

Navigation