Log in

Influence of Some Trace Elements on Solidification Path and Microstructure of Al-Si Foundry Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, Ca, Ni, V, and Zn were added to a high purity binary Al-7wt pct Si and commercial purity A356 foundry alloy in the nominal range of 50 to 600 ppm in order to study their effect on the solidification path and the resultant microstructure. Thermal analysis was used to assess nucleation and growth of the various phases. It was found that Ca and Ni additions suppress characteristic temperatures associated with nucleation and growth of the eutectic by up to 4 and 1.5 K, respectively. Additionally, Ca was observed to modify the eutectic Si and a concentration as low as 39 ppm Ca was sufficient to precipitate the geometrically unfavored polyhedral Al2Si2Ca phase. Furthermore, Ni addition resulted in the formation of two intermetallic phases when the Ni concentration exceeded 300 ppm. These phases have been quantified as Al3Ni and Al9FeNi by SEM-EDS. V and Zn had no apparent effect on the cooling curve and the microstructure. Even though it could be shown that V accumulates preferably in β-Al5FeSi particles, V concentrations of 600 ppm were too low to have any influence on the phase’s morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Jha, F. Cannova and B. Sadler: Light Met., 2012, pp. 1303–06.

  2. J. Grandfield and J.A. Taylor: Mater. Sci. Forum, 2009, vol. 630, pp. 129-136.

    Article  Google Scholar 

  3. T. Furu, N. Telioui, C. Behrens, J. Hasenclever and P.L. Schaffer: Proceedings of the ICAA12, 2010, pp. 282–89.

  4. X. Liu, J. Qiao, Y. Wu, X. Liu and X. Bian: J. Alloys Compd., 2005, vol. 388, pp. 83-90.

    Article  CAS  Google Scholar 

  5. J. Tamminen: “Chemical Communications University of Stockholm, No. 2” 1988, Alutron, Sweden, Reprint 2002.

  6. J.E. Gruzleski and B.M. Closset: The Treatment of Liquid Aluminium-Silicon Alloys, 1st ed., AFS, Des Plaines, IL, 1990, pp. 1–102.

  7. L. Backerud, G. Chai and J. Tamminen: Solidification Characteristics of Aluminium Alloys, Volume 2: Foundry Alloys, 1st ed., AFS, Des Plaines, IL, 1990, pp. 127–50.

  8. L. Arnberg and L. Bäckerud: Solidification Characteristics of Aluminium Alloys, Volume 3: Dendrite Coherency, 1 st ed., AFS, Des Plaines, IL, 1996, pp. 93–105.

  9. R.I. Mackay and J. Gruzleski: Int. J. Cast Met. Res., 1998, vol. 10, pp. 255-266.

    CAS  Google Scholar 

  10. R.I. Mackay and J. Gruzleski: Int. J. Cast Met. Res., 1997, vol. 10, pp. 131-146.

    CAS  Google Scholar 

  11. S.S.S. Kumari, R.M. Pillai and B.C. Pai: Int. Mater. Rev., 2005, vol. 50, pp. 216-238.

    Article  CAS  Google Scholar 

  12. S.Z. Lu and A. Hellawell: Metall. Trans. A, 1987, vol. 18A, pp. 1721-1733.

    CAS  Google Scholar 

  13. S.D. McDonald, A.K. Dahle, J.A. Taylor and D.H. StJohn: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1829-1837.

    Article  CAS  Google Scholar 

  14. A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis and L. Lu: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 243-248.

    Google Scholar 

  15. Y.H. Cho and A.K. Dahle: Proceedings of the Materials & AustCeram, Gold Coast, 2009.

  16. S.D. McDonald, K. Nogita and A.K. Dahle: Acta Mater., 2004, vol. 52, pp. 4273-4280.

    Article  CAS  Google Scholar 

  17. A. Abdollahi and J. Gruzleski: Int. J. Cast Met. Res., 1998, vol. 11, pp. 145-156.

    CAS  Google Scholar 

  18. A.A. Zaldívar-Cadena and A. Flores-Valdés: Mater. Charact., 2007, vol. 58, pp. 834-841.

    Article  Google Scholar 

  19. S.S.S. Kumari, R.M. Pillai and B.C. Pai: J. Alloys Compd., 2008, vol. 460, pp. 472-477.

    Article  CAS  Google Scholar 

  20. G. Effenberg and S. Ilyenko, eds.: Light Metal Ternary Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, Springer, Berlin, 2005, pp. 400–24.

  21. V.S. Zolotorevskiĭ, N.A. Belov and M.V. Glazoff: Casting Aluminum Alloys, 1st ed., Elsevier, Oxford, 2007, pp. 54–55.

  22. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann and P.J. Uggowitzer: Mater. Sci. Forum, 2011, vol. 690, pp. 274-277.

    Article  CAS  Google Scholar 

  23. N.A. Belov, D.G. Eskin and A.A. Aksenov: Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, 1st ed., Elsevier, Oxford, 2005, pp. 232–35.

  24. O. Madelung, ed.: Thermodynamic Properties: Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Ac-Au - Au-Zr, Springer, Berlin, 1991, pp. 1–6.

  25. B. Huber, H.S. Effenberger and K.W. Richter: Intermetallics, 2010, vol. 18, pp. 606-615.

    Article  CAS  Google Scholar 

  26. V. Raghavan: J. Phase Equilib. Diffus., 2010, vol. 32, pp. 68-71.

    Article  Google Scholar 

  27. Ž. Skoko, S. Popović and G. Štefanić: Croat. Chem. Acta, 2009, vol. 82, pp. 405-420.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hartmut Ludwig.

Additional information

Manuscript submitted August 15, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig, T.H., Schaffer, P.L. & Arnberg, L. Influence of Some Trace Elements on Solidification Path and Microstructure of Al-Si Foundry Alloys. Metall Mater Trans A 44, 3783–3796 (2013). https://doi.org/10.1007/s11661-013-1694-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1694-y

Keywords

Navigation