Log in

First-Principles Calculations: Structural, Anisotropic, and Electronic Properties of BC14 Carbon Under Pressure

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work investigates the structural, mechanical, and electrical properties of the superhard semiconductor carbon BC14 under pressure, based on density functional theory (DFT). BC14 formed by sp3 hybridization still maintains good mechanical stability and dynamic stability under 100 GPa pressure. The relative enthalpy of BC14 increases gradually at a slower rate and is always much lower than that of BC12, C96, T-carbon, TY-carbon, and Y-carbon. The elastic constant, elastic modulus, and ratio of bulk modulus (B) to shear modulus (G) increase with pressure, while the hardness exhibits a decreasing tendency. BC14 is anisotropic in elastic mechanics, and its Young’s modulus (E) is isotropic in the (111) direction. Increasing pressure leads to the anisotropy of elastic modulus becoming stronger. From 0 GPa to 100 GPa, the band gap increases from 5.56 eV to 6.07 eV, and inherits indirect characteristics. No obvious effect of pressure is observed with regard to the number of diffraction peaks in the XRD pattern, but the diffraction peaks are slightly shifted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.H. Li, Q. Liu, Y.N. Zhang, C.A. Li, Z.F. He, W.C.H. Choy et al., Biodegradable Materials and Green Processing for Green Electronics. Adv. Mater. 32, 2001591 (2020).

    Article  CAS  Google Scholar 

  2. L. Sun, Y.N. Gong, D.L. Li, and C.X. Pan, Biomass-Derived Porous Carbon Materials: Synthesis, Designing, and Applications for Supercapacitors. Green Chem. 24, 3864 (2022).

    Article  CAS  Google Scholar 

  3. Q. Fan, Y. Sun, Y. Zhao, Y. Song, and S. Yun, Group 14 Elements in the CMCM Phase with a Direct Band Structure for Photoelectric Application. Phys. Scr. 98, 015701 (2023).

    Article  ADS  CAS  Google Scholar 

  4. J.X. Jiang, H.Y. Guo, J.Q. Zhang, G.Z. Zuo, X.J. Wu, Z.W. Zhuo, and N. Lu, Poly-Triphenylene Membrane: A Multifunctional Two-Dimensional Porous Carbon Framework with Ultra-High Carrier Mobilities and Potassium Ion Storage Capacity. Appl. Surf. Sci. 631, 157503 (2023).

    Article  CAS  Google Scholar 

  5. R. Zhao, Q. Fan, R. Yang, Y. Song, X. Yu, and S. Yun, Exploration and Investigation of Stable Novel Al2O3 by High-Throughput Screening and Density Functional Theory. J. Mater. Res. Technol. 23, 4244 (2023).

    Article  CAS  Google Scholar 

  6. M. **ng, and X. Li, The Physical Properties of a Novel Carbon Allotrope in Tetragonal Symmetry. J. Electron. Mater. 52, 2071 (2023).

    Article  ADS  CAS  Google Scholar 

  7. H. Liu, M. **ng, and Q. Fan, Four Superhard Tetragonal Carbon Allotropes: First-Principles Calculations. Diam. Relat. Mater. 135, 109854 (2023).

    Article  ADS  CAS  Google Scholar 

  8. M. **ng, and X. Li, An Orthorhombic Carbon Allotrope with a Quasi-Direct Band Gap and Superhard. Diam. Relat. Mater. 131, 109592 (2023).

    Article  ADS  CAS  Google Scholar 

  9. H. Li, J.H. Lim, Y.P. Lv, N.N. Li, B.T. Kang, and J.Y. Lee, Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization: Theoretical Insights into Recent Advances. Chem. Rev. 123, 4795 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. A.J. Stasyuk, M. Stasyuk, and A.A. Sola, Voityuk, c-graphyne: A Promising Electron Acceptor for Organic Photovoltaics. Mater. Des. 225, 111526 (2023).

    Article  CAS  Google Scholar 

  11. P. Scharff, New Carbon Materials for Research and Technology. Carbon 36, 481 (1998).

    Article  CAS  Google Scholar 

  12. H. Liu, Q. Fan, L. Jiang, W. Zhang, Y. Song, X. Yu, and S. Yun, Designing a sp3 Structure of Carbon T-C9: First-Principles Calculations. Results Phys 19, 103690 (2020).

    Article  Google Scholar 

  13. X.Y. Wang, D.M. Proserpio, C. Oses, C. Toher, S. Curtarolo, and E. Zurek, The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes at Ambient Pressure. Angew. Chem. Int. Ed. 61, e202205129 (2022).

    Article  ADS  CAS  Google Scholar 

  14. H. Liu, Q.Y. Fan, F. Yang, X.H. Yu, W. Zhang, and S.N. Yun, tP40 Carbon: A Novel Superhard Carbon Allotrope. Chin. Phys. B 29, 106102 (2020).

    Article  ADS  CAS  Google Scholar 

  15. R.H. Huang, Z.H. Kou, R.D. Rodriguez, X.S. Wang, Y. Hou, T. Wang, and T. Zhang, Two-Dimensional Silver-Metalated Graphdiyne Nanosheets for Photocatalytic Degradation of Antibiotics. ACS Appl. Nano Mater. 6, 7395 (2023).

    Article  CAS  Google Scholar 

  16. X.Z. Shi, S.F. Li, J. Li, T. Ouyang, C.X. Zhang, C. Tang, C.Y. He, and J.X. Zhong, High-Throughput Screening of Two-Dimensional Planar sp2 Carbon Space Associated with a Labeled Quotient Graph. J. Phys. Chem. Lett. 12, 11511 (2022).

    Article  Google Scholar 

  17. Z. Ran, C. Zou, Z. Wei, H. Wang, and R. Zhang, Phase Transitions and Elastic Anisotropies of SiC Polymorphs Under High Pressure. N. Fang, Ceram. Int. 47, 6187 (2021).

    Article  CAS  Google Scholar 

  18. J. Kou, Y. Zhou, K.L. Li, and L.H. Gan, The Stability, Electronic, Mechanical and Thermal Properties of Three Novel Superhard Carbon Crystals. Comput. Mater. Sci. 182, 109758 (2020).

    Article  CAS  Google Scholar 

  19. X. Jiang, C. Århammar, P. Liu, J. Zhao, and R. Ahuja, The R3-Carbon Allotrope: A Pathway Towards Glassy Carbon Under High Pressure. Sci. Rep. 3, 1877 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. W. Zheng, Q.J. Liu, Z.T. Liu, and Z.Q. Zhang, First-Principles Calculations of Structural, Electronic and Elastic Properties of Carbon Allotropes. Mater. Sci. Semicond. Process. 146, 106692 (2022).

    Article  CAS  Google Scholar 

  21. N. Ando, B. Barquera, D.H. Bartlett, E. Boyd, A.A. Burnim, A.S. Byer, D. Colman et al., The Molecular Basis for Life in Extreme Environments. Annu. Rev. Biophys. 50, 343 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. J.T. Wang, C. Chen, and H. Mizuseki, Body Centered Cubic Carbon BC14: An All-sp3 Bonded Full-Fledged Pentadiamond. Phys. Rev. B 102, 184106 (2020).

    Article  ADS  CAS  Google Scholar 

  23. P. Hohenberg, and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. 136, B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  24. W. Kohn, and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133 (1956).

    Article  MathSciNet  Google Scholar 

  25. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson et al., First Principles Methods Using CASTEP. Z. Kristallogr. 220, 567 (2005).

    Article  CAS  Google Scholar 

  26. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. B.G. Pfrommer, M. Côté, S.G. Louie, and M.L. Cohen, Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 131, 233 (1997).

    Article  ADS  CAS  Google Scholar 

  28. D. Vanderbilt, Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B 41, 7892 (1990).

    Article  ADS  CAS  Google Scholar 

  29. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 73, 515 (2001).

    Article  ADS  CAS  Google Scholar 

  30. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  ADS  PubMed  Google Scholar 

  31. Q. Fan, H. Liu, R. Yang, X. Yu, W. Zhang, and S. Yun, An orthorhombic superhard carbon allotrope: Pmma C24. J. Solid State Chem. 300, 122260 (2021).

    Article  CAS  Google Scholar 

  32. M. **ng, and X. Li, Structural, Elastic, and Electronic Properties of BC12 Carbon Under Pressure. Chem. Phys. 568, 111838 (2023).

    Article  CAS  Google Scholar 

  33. X.L. Sheng, Q.B. Yan, F. Ye, Q.R. Zheng, and G. Su, T-Carbon: A Novel Carbon Allotrope. Phys. Rev. Lett. 106, 155703 (2011).

    Article  ADS  PubMed  Google Scholar 

  34. J.Y. Jo, and B.G. Kim, Carbon Allotropes with Triple Bond Predicted by First-Principle Calculation: Triple Bond Modified Diamond and T-Carbon. Phys. Rev. B 86, 075151 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  35. D. Li, F. Tian, B. Chu, D. Duan, S. Wei, Y. Lv, H. Zhang, L. Wang, N. Lu, B. Liu, and T. Cui, Cubic C96: A Novel Carbon Allotrope with a Porous Nanocube Network. J. Mater. Chem. A 3, 10448 (2015).

    Article  CAS  Google Scholar 

  36. F. Mouhat, and F.X. Couder, Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems. Phys. Rev. B 90, 224104 (2004).

    Article  ADS  Google Scholar 

  37. S.F. Pugh, XCII, Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954).

    Article  CAS  Google Scholar 

  38. Y. Tian, B. Xu, and Z. Zhao, XCII, Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Int. J. Refract. Met. Hard Mater. 33, 93 (2012).

    Article  CAS  Google Scholar 

  39. X.Q. Chen, H. Niu, D. Li, and Y. Li, Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses. Intermetallics 19, 1275 (2011).

    Article  CAS  Google Scholar 

  40. E. Mazhnik, and A.R. Oganov, A Model of Hardness and Fracture Toughness of Solids. J. Appl. Phys. 126, 125109 (2019).

    Article  ADS  Google Scholar 

  41. O.L. Anderson, A Simplified Method for Calculating the Debye Temperature from Elastic Constants. J. Phys. Chem. Solids. 24, 909–917 (1963).

    Article  ADS  CAS  Google Scholar 

  42. Z. Ma, Z. Han, X. Liu, X. Yu, D. Wang, and Y. Tian, Pnma-BN: Another Boron Nitride Polymorph with Interesting Physical Properties. Nanomaterials 7, 3 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61564005 and 61804120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjiang **ng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., **ng, M. & Fan, Q. First-Principles Calculations: Structural, Anisotropic, and Electronic Properties of BC14 Carbon Under Pressure. J. Electron. Mater. 53, 1923–1932 (2024). https://doi.org/10.1007/s11664-024-10926-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-10926-z

Keywords

Navigation