Log in

The Physical Properties of a Novel Carbon Allotrope in Tetragonal Symmetry

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A novel sp3 + sp2 hybridized carbon allotrope in the P4/mmm phase, denoted as tP48 carbon, is proposed and predicted according to density functional theory. The tP48 carbon allotrope is mechanically, dynamically, and thermodynamically stable. The bulk modulus, B, of tP48 carbon is slightly larger than that of other carbon allotropes in the tP family. Of the tP family of carbon materials, tP48 carbon exhibits the greatest anisotropy in terms of its Young’s modulus, E, Poisson’s ratio, v, and shear modulus, G. In regards to its electronic band structure, tP48 carbon is an indirect semiconductor material with a band gap of 1.516 eV. The XRD characteristics of tP48 carbon are also studied in this work, with the associated characteristics found to be of guiding significance for determining the structure of tP48 carbon in subsequent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.M. Peng, Z.Y. Zhang, S. Wang et al., Carbon based nanoelectronics: materials and devices. Sci. Sin. Tech. 44, 1071–1086 (2014) (in Chinese).

    Article  Google Scholar 

  2. M. **ng and X. Li, Designing sp3 networks of two novel carbon allotropes in the P4/mmm phase. Chin. J. Phys. 75, 90–103 (2022).

    Article  CAS  Google Scholar 

  3. C. He, X. Shi, S. Clark, J. Li, C. Pickard, T. Ouyang, C. Zhang, C. Tang, and J. Zhong, Complex low energy tetrahedral polymorphs of group IV elements from first principles. Phys. Rev. Lett. 121, 175701 (2018).

    Article  CAS  Google Scholar 

  4. M. **ng, C. Qian, and X. Li, Two novel carbon allotropes with tetragonal symmetry: first-principles calculations. J. Solid State Chem. 309, 122971 (2022).

    Article  CAS  Google Scholar 

  5. F. Delodovici, N. Manini, R. Wittman, D. Choi, M. Fahim, and L. Burchfield, Protomene: a new carbon allotrope. Carbon 126, 574–579 (2018).

    Article  CAS  Google Scholar 

  6. N. Nulakani and V. Subramanian, Superprismane: a porous carbon allotrope. Chem. Phys. Lett. 715, 29–33 (2019).

    Article  CAS  Google Scholar 

  7. Z. Ma, J. Zuo, C. Tang, P. Wang, and C. Shi, Physical properties of a novel phase of boron nitride and its potential applications. Mater. Chem. Phys. 252, 123245 (2020).

    Article  CAS  Google Scholar 

  8. X. Yu, R. Su, and B. He, A novel BN polymorph with ductile manner. J. Solid State Chem. 306, 122794 (2022).

    Article  CAS  Google Scholar 

  9. Q. Fan, N. Wu, S. Chen, L. Jiang, W. Zhang, X. Yu, and S. Yun, P213 BN: a novel large-cell boron nitride polymorph. Commun. Theor. Phys. 73, 125701 (2021).

    Article  CAS  Google Scholar 

  10. Q. Wang, B. Xu, J. Sun, H. Liu, Z. Zhao, D. Yu, C. Fan, and J. He, Direct band gap silicon allotropes. J. Am. Chem. Soc. 136, 9826–9829 (2014).

    Article  CAS  Google Scholar 

  11. X. Cai, Q. Yang, Y. Pang, and M. Wang, A theoretical prediction of a new silicon allotrope: tP36-Si. Comput. Mater. Sci. 173, 109441 (2020).

    Article  CAS  Google Scholar 

  12. Q.Y. Fan, Y.C. Sun, Y.B. Zhao, Y.X. Song, and S.N. Yun, Group 14 elements in the Cmcm phase with a direct band structure for photoelectric application. Phys. Scr. 98, 015701 (2023).

    Article  Google Scholar 

  13. N. Zhou, P. Zhou, J. Li, C. He, and J. Zhong, Si-Cmma: a silicon thin film with excellent stability and Dirac nodal loop. Phys. Rev. B. 100, 115425 (2019).

    Article  CAS  Google Scholar 

  14. Q. Fan, B. Hao, Y. Zhao, Y. Song, W. Zhang, and S. Yun, Si–C alloys with direct band gaps for photoelectric application. Vac. 199, 110952 (2022).

    Article  CAS  Google Scholar 

  15. X. Zhang, C. Ying, S. Quan, G. Shi, and Z. Li, Ab initio study of the structural, phonon, elastic and thermodynamic properties of the ordered Ge0.5Sn0.5 cubic alloy under high pressure. Comput. Mater. Sci. 58, 12–16 (2012).

    Article  CAS  Google Scholar 

  16. X. Shi, S. Li, J. Li, T. Ouyang, C. Zhang, C. Tang, C. He, and J. Zhong, High-throughput screening of two-dimensional planar sp2 carbon space associated with a labeled quotient graph. J. Phys. Chem. Lett. 12, 11511 (2021).

    Article  CAS  Google Scholar 

  17. W. Zhang, C. Chai, Q. Fan, Y. Song, and Y. Yang, Two-dimensional carbon allotropes with tunable direct band gaps and high carrier mobility. Appl. Surf. Sci. 537, 147885 (2021).

    Article  CAS  Google Scholar 

  18. M. Sun, Y. Yan, and U. Schwingenschlögl, Beryllene: a promising anode material for Na- and K-ion batteries with ultrafast charge/discharge and high specific capacity. J. Phys. Chem. Lett. 11(21), 9051–9056 (2020).

    Article  CAS  Google Scholar 

  19. Z. Gong, X. Shi, J. Li, S. Li, C. He, T. Ouyang, C. Zhang, C. Tang, and J. Zhong, Theoretical prediction of a low-energy Stone–Wales graphene with intrinsic type-III Dirac-cone. Phys. Rev. B. 101, 155427 (2020).

    Article  CAS  Google Scholar 

  20. M. Sun and U. Schwingenschlögl, δ-CS: a direct-band-gap semiconductor combining auxeticity, ferroelasticity, and potential for high-efficiency solar cells. Phys. Rev. Appl. 14, 044015 (2020).

    Article  CAS  Google Scholar 

  21. M. **ng and X. Li, An orthorhombic carbon allotrope with a quasi-direct band gap and superhard. Diam. Relat. Mater. 131, 109592 (2023).

    Article  CAS  Google Scholar 

  22. X. Li and M. **ng, Prediction of a novel carbon allotrope from first-principle calculations: a potential superhard material in monoclinic symmetry. Mater. Chem. Phys. 242, 122480 (2020).

    Article  CAS  Google Scholar 

  23. Q. Fan, H. Gao, R. Yang, W. Zhang, X. Yu, and S. Yun, A superhard orthorhombic carbon allotrope. Chin. J. Phys. 79, 409–419 (2022).

    Article  CAS  Google Scholar 

  24. X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity. Carbon 123, 311–317 (2017).

    Article  CAS  Google Scholar 

  25. L. Liu, M. Hu, Z. Zhao, Y. Pan, and H. Dong, Superhard conductive orthorhombic carbon polymorphs. Carbon 158, 546–552 (2020).

    Article  CAS  Google Scholar 

  26. Q. Fan, H. Liu, L. Jiang, W. Zhang, Y. Song, Q. Wei, X. Yu, and S. Yun, Three-dimensional metallic carbon allotropes with superhardness. Nanotechnol. Rev. 10, 1266–1276 (2021).

    Article  CAS  Google Scholar 

  27. Y. Liu, X. Jiang, J. Fu, and J. Zhao, New metallic carbon: three dimensionally carbon allotropes comprising ultrathin diamond nanostripes. Carbon 126, 601–610 (2018).

    Article  CAS  Google Scholar 

  28. W. Zhang, C. Chai, Y. Song, Q. Fan, and Y. Yang, 3D superhard metallic carbon network with 1D multithreaded conduction. Diam. Relat. Mater. 120, 108706 (2021).

    Article  CAS  Google Scholar 

  29. Q. Fan, R. Zhao, L. Jiang, W. Zhang, Y. Song, and S. Yun, Ima2 C32: an orthorhombic carbon allotrope with direct band gap. Diam. Relat. Mater. 120, 108602 (2021).

    Article  CAS  Google Scholar 

  30. W. Zhang, C. Chai, Q. Fan, Y. Song, and Y. Yang, Penta-C20: a superhard direct band gap carbon allotrope composed of carbon pentagon. Mater. 13(8), 1926 (2020).

    Article  CAS  Google Scholar 

  31. Z. Zhang, H. Liu, and M. Zhang, Superhard sp3 carbon allotrope: Ab initio calculations. EPL 108(4), 46006 (2014).

    Article  Google Scholar 

  32. X. Yang, C. Lv, S. Liu, J. Zang, J. Qin, M. Du, D. Yang, X. Li, B. Liu, and C. Shan, Orthorhombic C14 carbon: a novel superhard sp3 carbon allotrope. Carbon 156, 309–312 (2020).

    Article  CAS  Google Scholar 

  33. Z. Li, M. Hu, M. Ma, Y. Gao, B. Xu, J. He, D. Yu, Y. Tian, and Z. Zhao, Superhard superstrong carbon clathrate. Carbon 105, 151–155 (2016).

    Article  CAS  Google Scholar 

  34. Y. Oh, S. Kim, I. Lee, J. Lee, and K. Chang, Direct band gap carbon superlattices with efficient optical transition. Phys. Rev. B. 93, 085201 (2016).

    Article  Google Scholar 

  35. F. Delodovici, N. Manini, R. Wittman, D. Choi, A. Mohamed, and L. Burchfield, Protomene: a new carbon allotrope. Carbon 126, 574–579 (2018).

    Article  CAS  Google Scholar 

  36. Y. Gao, X. Feng, B. Gong, C. Zhong, S. Yang, K. Liu, and Z. Lu, Theoretical design of all-carbon networks with intrinsic magnetism. Carbon 177, 11–18 (2021).

    Article  CAS  Google Scholar 

  37. X. Shi, C. He, C. Pickard, C. Tang, and J. Zhong, Stochastic generation of complex crystal structures combining group and graph theory with application to carbon. Phys. Rev. B. 97, 014104 (2018).

    Article  CAS  Google Scholar 

  38. R. Hoffmann, A. Kabanov, A. Golov, and D. Proserpio, Homo citans and carbon allotropes: for an ethics of citation. Angew. Chem. Int. Ed. 55, 10962–10976 (2016).

    Article  CAS  Google Scholar 

  39. M. O’Keeffe, M. Peskov, S. Ramsden, and O. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).

    Article  Google Scholar 

  40. M.O’Keeffe, O. Yaghi, S. Ramsden, Reticular chemistry structure resource, Australian National University Supercomputer Facility. http://rcsr.anu.edu.au/. Accessed 1 February 2022.

  41. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964).

    Article  Google Scholar 

  42. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1956).

    Article  Google Scholar 

  43. J. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  44. S. Clark, M. Segall, C. Pickard, P. Hasnip, M. Probert, and K. Refson, First principles methods using CASTEP. Z. Krist. 220, 567–570 (2005).

    CAS  Google Scholar 

  45. H. Monkhorst and J. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188 (1976).

    Article  Google Scholar 

  46. B. Pfrommer, M. Cote, S. Louie, and M. Cohen, Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131, 233–240 (1997).

    Article  CAS  Google Scholar 

  47. A. Krukau, O. Vydrov, A. Izmaylov, and G. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

  48. S. Baroni, S. Gironcoll, A. Corso, and P. Glannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).

    Article  CAS  Google Scholar 

  49. Q. Fan, H. Wang, Y. Song, W. Zhang, and S. Yun, Five carbon allotropes from Squaroglitter structures. Comput. Mater. Sci. 178, 109634 (2020).

    Article  CAS  Google Scholar 

  50. X. Sheng, Q. Yan, F. Ye, Q. Zheng, and G. Su, T-carbon: a novel carbon allotrope. Phys. Rev. Lett. 106, 155703 (2011).

    Article  Google Scholar 

  51. J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, H. Su, and C. Niu, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. 8, 683 (2017).

    Article  Google Scholar 

  52. F. Mouhat and F. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 90, 224104 (2014).

    Article  Google Scholar 

  53. Z. Wu, E. Zhao, H. **ang, X. Hao, X. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B. 76, 054115 (2007).

    Article  Google Scholar 

  54. Q. Fan, Q. Wei, H. Yan, M. Zhang, Z. Zhang, J. Zhang, and D. Zhang, Elastic and electronic properties of Pbca-BN: first-principles calculations. Comput. Mater. Sci. 85, 80–87 (2014).

    Article  CAS  Google Scholar 

  55. W. Mao, H. Mao, P. Eng, and T. Trainor, Bonding changes in compressed superhard graphite. Science 302(5644), 425–427 (2003).

    Article  CAS  Google Scholar 

  56. M.I. Petrescu, Boron nitride theoretical hardness compared to carbon polymorphs. Diam. Relat. Mater. 13, 1848 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant Numbers 61864004 and 61564005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aozhen Li.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ng, M., Li, X. The Physical Properties of a Novel Carbon Allotrope in Tetragonal Symmetry. J. Electron. Mater. 52, 2071–2079 (2023). https://doi.org/10.1007/s11664-022-10173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10173-0

Keywords

Navigation