Log in

Optimization of Electrode, Interlayer and Absorber Layers of a Gr/ReS2/PSi/p-cSi Photovoltaic Solar Cell with SCAPS

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Porous silicon (PSi) improves the performance of commonly used silicon solar cells due to its large surface-to-volume ratio and high light absorption capability. PSi increases light absorption and power conversion efficiency (PCE) compared to traditional silicon solar cells. Due to the unique optical properties of transition metal dichalcogenides (TMDCs), device performance improves when a TMDC layer is added to PSi-based photonic devices. However, only three studies in the literature have investigated TMDC/PSi structures so far. In this study, a Gr/ReS2/PSi/p-cSi solar cell structure is discussed. In the proposed structure, Gr, ReS2 and PSi are used as transparent conductive electrode, interlayer and absorber, respectively. The effects of thicknesses, NC and NV, and do** concentrations of the graphene, ReS2 and PSi layers are examined and the layers are optimized. JSC, VOC, FF and PCE values of the optimized device are calculated as 32.83 mA/cm2, 0.88 V, 80.72% and 23.35%, respectively. In addition, 84.5% external quantum efficiency (EQE) at 550 nm and 0.467 A/W R at 790 nm are obtained. The proposed device demonstrates higher efficiency and VOC and FF values than the studies in the literature are obtained with the proposed structure. In addition, the reflectance of PSi and ReS2/PSi layers on a silicon (Si) substrate are calculated, and it is observed that these layers decrease reflectance due to their small refractive index. To the best of our knowledge, there is no study in the literature using ReS2 as an interlayer material. It is expected that the obtained results will be of benefit for future experimental and theoretical solar cell studies containing ReS2 layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Kim, S.S. Joo, K.W. Lee, J.H. Kim, D.H. Shin, S. Kim, and S.H. Choi, Near-ultraviolet-sensitive graphene/porous silicon photodetectors. ACS Appl. Mater. Interfaces 6, 20880 (2014).

    Article  CAS  Google Scholar 

  2. C.W. Jang, D.H. Shin, J.S. Ko, and S.H. Choi, Performance enhancement of graphene/porous Si solar cells by employing layer-controlled MoS2. Appl. Surf. Sci. 532, 147460 (2020).

    Article  CAS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.-E. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  4. J. Wang, J. Han, X. Chen, and X. Wang, Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 1, 33 (2019).

    Article  CAS  Google Scholar 

  5. Q. Lv, F. Yan, X. Wei, and K. Wang, High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 6, 1700490 (2018).

    Article  Google Scholar 

  6. Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M= Zr, Hf; X= S, Se) and dichalcogenides MX2 (M= Tc, Re; X= S, Se) for solar applications. Nanoscale 10, 3547 (2018).

    Article  CAS  Google Scholar 

  7. C.W. Jang, D.H. Shin, and S.H. Choi, High-photoresponse and broad-band graphene/WS2/porous-Si heterostructure photodetectors. ACS Appl. Nano Mater. 5, 13260 (2022).

    Article  CAS  Google Scholar 

  8. E. Zhang, Y. **, X. Yuan, W. Wang, C. Zhang, L. Tang, S. Liu, P. Zhou, W. Hu, and F. **u, ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 25, 4076 (2015).

    Article  CAS  Google Scholar 

  9. F. Cui, X. Li, Q. Feng, J. Yin, L. Zhou, D. Liu, K. Liu, X. He, X. Liang, and S. Liu, Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 10, 2732 (2017).

    Article  CAS  Google Scholar 

  10. S.H. Jo, H.W. Lee, J. Shim, K. Heo, M. Kim, Y.J. Song, and J.H. Park, Highly efficient infrared photodetection in a gate-controllable van der Waals heterojunction with staggered bandgap alignment. Adv. Sci. 5, 1700423 (2018).

    Article  Google Scholar 

  11. B. Kang, Y. Kim, W.J. Yoo, and C. Lee, Ultrahigh photoresponsive device based on ReS2/graphene heterostructure. Small 14, 1802593 (2018).

    Article  Google Scholar 

  12. P.K. Srivastava, Y. Hassan, Y. Gebredingle, J. Jung, B. Kang, W.J. Yoo, B. Singh, C.V. Lee, and der, Waals broken-gap pn heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces 11, 8266 (2019).

    Article  CAS  Google Scholar 

  13. A.M. Afzal, Y. Javed, N.A. Shad, M.Z. Iqbal, G. Dastgeer, M.M. Sajid, and S. Mumtaz, Tunneling-based rectification and photoresponsivity in black phosphorus/hexagonal boron nitride/rhenium diselenide van der Waals heterojunction diode. Nanoscale 12, 3455 (2020).

    Article  CAS  Google Scholar 

  14. Y.-C. Li, X.-X. Li, G. Zeng, Y.-C. Chen, D.-B. Chen, B.-F. Peng, L.-Y. Zhu, D.W. Zhang, and H.-L. Lu, High optoelectronic performance of a local-back-gate ReS2/ReSe2 heterojunction phototransistor with hafnium oxide dielectric. Nanoscale 13, 14435 (2021).

    Article  CAS  Google Scholar 

  15. F. Hu, X. Peng, J. **e, and Y. Liao, Influence of vertical strain on the photoelectronic properties of the ReSe2/MoSe2 van der Waals heterostructure. Appl. Surf. Sci. 572, 151465 (2022).

    Article  CAS  Google Scholar 

  16. A.M. Afzal, M.Z. Iqbal, G. Dastgeer, G. Nazir, and J. Eom, Ultrafast and highly stable photodetectors based on p-GeSe/n-ReSe2 heterostructures. ACS Appl. Mater. Interfaces 13, 47882 (2021).

    Article  CAS  Google Scholar 

  17. G. Dastgeer, A.M. Afzal, G. Nazir, and N. Sarwar, p-GeSe/n-ReS2 heterojunction rectifier exhibiting a fast photoresponse with ultra-high frequency-switching applications. Adv. Mater. Interfaces 8, 2100705 (2021).

    Article  CAS  Google Scholar 

  18. H. Ma, Y. **ng, J. Han, B. Cui, T. Lei, H. Tu, G. Baolu, Z. Zhongming, Z. Baushun, and W. Lv, Ultrasensitive and broad-spectrum photodetectors based on InSe/ReS2 Heterostructure. Adv. Opt. Mater. 10, 2101772 (2022).

    Article  CAS  Google Scholar 

  19. C. Park, N.T. Duong, S. Bang, D.A. Nguyen, H.M. Oh, and M.S. Jeong, Photovoltaic effect in a few-layer ReS2/WSe2 heterostructure. Nanoscale 10, 20306 (2018).

    Article  CAS  Google Scholar 

  20. N.V.P. Chandra, I.T. Koneri, N. Padma, and A.K. Chandiran, Investigation of charge collection layers for thin film rhenium sulfide solar cells. Appl. Surf. Sci. 602, 154212 (2022).

    Article  Google Scholar 

  21. V. Dhyani, P. Dwivedi, S. Dhanekar, and S. Das, High performance broadband photodetector based on MoS2/porous silicon heterojunction. Appl. Phys. Lett. 11, 191107 (2017).

    Article  Google Scholar 

  22. C.K. Borah, P.K. Tyagi, and S. Kumar, The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency. Nanoscale Adv. 2, 3231 (2020).

    Article  CAS  Google Scholar 

  23. K. Patel, and P.K. Tyagi, Multilayer graphene as a transparent conducting electrode in silicon heterojunction solar cells. AIP Adv. 5, 077165 (2015).

    Article  Google Scholar 

  24. B. Mukherjee, A. Zulkefli, R. Hayakawa, Y. Wakayama, and S. Nakaharai, Enhanced quantum efficiency in vertical mixed-thickness n-ReS2/p-Si heterojunction photodiodes. ACS Photonics 6, 2277 (2019).

    Article  CAS  Google Scholar 

  25. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  26. M. Burgelman, P. Nollet, and S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000).

    Article  Google Scholar 

  27. S. Karthick, S. Velumani, and J. Bouclé, Experimental and SCAPS simulated formamidinium perovskite solar cells A comparison of device performance. Sol. Energy 205, 349 (2020).

    Article  CAS  Google Scholar 

  28. M. Al-Hattab, M. Khenfouch, O. Bajjou, Y. Chrafih, and K. Rahmani, Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software. Sol. Energy 227, 13 (2021).

    Article  CAS  Google Scholar 

  29. A. Bouarissa, A. Gueddim, N. Bouarissa, and H. Maghraoui-Meherezi, Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through window, buffer and absorber layers optimization. Mater. Sci. Eng. B 263, 114816 (2021).

    Article  CAS  Google Scholar 

  30. R. Chaurasiya, G.K. Gupta, and A. Dixit, Heterostructure AZO/WSeTe/W (S/Se)2 as an efficient single junction solar cell with ultrathin janus WSeTe buffer layer. J. Phys. Chem. C 125(8), 4355 (2021).

    Article  CAS  Google Scholar 

  31. N. Kumari, and S. Ingole, Enhancement of CZTS photovoltaic device performance with silicon at back-contact a study using SCAPS-1D. Sol. Energy 236, 301 (2022).

    Article  CAS  Google Scholar 

  32. M.D. Haque, M.H. Ali, M.F. Rahman, and A.Z.M.T. Islam, Numerical analysis for the efficiency enhancement of MoS2 solar cell a simulation approach by SCAP-1D. Opt. Mater. 131, 112678 (2022).

    Article  CAS  Google Scholar 

  33. M.O. Ne, M. Boujnah, A. Benyoussef, and A. El Kenz, Comparative study of electronic and optical properties of graphene and germanene DFT study. Optik 158, 693 (2018).

    Article  Google Scholar 

  34. K. Li, C. Du, H. Gao, T. Yin, L. Zheng, J. Leng, and W. Wang, Ultrafast and polarization-sensitive ReS2/ReSe2 heterostructure photodetectors with ambipolar photoresponse. ACS Appl. Mater. Interfaces 14, 33589 (2022).

    Article  CAS  Google Scholar 

  35. X. Li, F. Cui, Q. Feng, G. Wang, X. Xu, J. Wu, N. Mao, X. Liang, Z. Zhang, J. Zhang, and H. Xu, Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 8, 18956 (2016).

    Article  CAS  Google Scholar 

  36. C. Kim, M. Sung, S.Y. Kim, B.C. Lee, Y. Kim, D. Kim, Y. Kim, Y. Seo, C. Theodorou, G.T. Kim, and M.K. Joo, Restricted channel migration in 2D multilayer ReS2. ACS Appl. Mater. Interfaces. 13, 19016 (2021).

    Article  CAS  Google Scholar 

  37. Z. Guo, A. Wei, Y. He, C. He, J. Liu, and Z. Liu, Controllable growth of large-area monolayer ReS2 flakes by chemical vapor deposition. J. Mater. Sci. Mater. Electron. 30, 15042 (2019).

    Article  CAS  Google Scholar 

  38. L. Canham, Handbook of Porous Silicon (Berlin: Springer, 2014), pp.163–170.

    Google Scholar 

  39. Tuzun, O., Metin, B., Oktika, S. Electrical analysis and numerical simulation of porous silicon solar cells. 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion (2010).

  40. D. Kovalev, G. Polisski, M. Ben-Chorin, J. Diener, and F. Koch, The temperature dependence of the absorption coefficient of porous silicon. J. Appl. Phys. 80, 5978 (1996).

    Article  CAS  Google Scholar 

  41. Husairi FS, Eswar KA, Guliling M, Khusaimi Z, Rusop M, Abdullah S (2018) May. Porosity and thickness effect of porous silicon layer on photoluminescence spectra, In AIP Conference Proceedings, p. 020060

  42. P. Sarafis, and A.G. Nassiopoulou, Dielectric properties of porous silicon for use as a substrate for the on-chip integration of millimeter-wave devices in the frequency range 140 to 210 GHz. Nanoscale Res. Lett. 9, 1 (2014).

    Article  CAS  Google Scholar 

  43. M.J. Hussein, W. Yunus, H.M. Kamari, A. Zakaria, and H.F. Oleiw, Effect of current density and etching time on photoluminescence and energy band gap of p-type porous silicon. Opt. Quant. Electron. 48, 1 (2016).

    Article  CAS  Google Scholar 

  44. A. Mortezaali, S.R. Sani, and F.J. Jooni, Correlation between porosity of porous silicon and optoelectronic properties. J. Non-Oxide Glasses 1, 293 (2009).

    Google Scholar 

  45. G. Gautier, and P. Leduc, Porous silicon for electrical isolation in radio frequency devices a review. Appl. Phys. Rev. 1, 011101 (2014).

    Article  Google Scholar 

  46. Hadi HA, Ismail RA (2021) March. Energy Band Diagram of FTO/porous Silicon Heterostructure, J. Phys. Conf. Ser, p. 012016

  47. Y. Lin, X. Li, D. **e, T. Feng, Y. Chen, R. Song, H. Tian, T. Ren, M. Zhong, K. Wang, and H. Zhu, Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ. Sci. 6, 108 (2013).

    Article  CAS  Google Scholar 

  48. A.K. Patel, R. Mishra, and S.K. Soni, Performance enhancement of CIGS solar cell with two dimensional MoS2 hole transport layer. Micro Nanostruct. 165, 207195 (2022).

    Article  CAS  Google Scholar 

  49. S. Kukreti, D.J. Sapkota, S. Ramawat, and A. Dixit, Near-infrared photodetector performance of Cu2ZnSnS4 in the metal-semiconductor-metal configuration: theoretical studies. Optik 264, 169385 (2022).

    Article  CAS  Google Scholar 

  50. K. Patel, and P.K. Tyagi, P-type multilayer graphene as a highly efficient transparent conducting electrode in silicon heterojunction solar cells. Carbon 116, 744 (2017).

    Article  CAS  Google Scholar 

  51. B. Qi and J. Wang, Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 15, 8972 (2013).

    Article  CAS  Google Scholar 

  52. Y. Tiandho, W. Sunanda, F. Afriani, A. Indriawati, and T.P. Handayani, Accurate model for temperature dependence of solar cell performance according to phonon energy correction. Latv. J. Phys. Tech. Sci. 55, 15 (2018).

    Google Scholar 

  53. Ananda W (2017) July. External quantum efficiency measurement of solar cell, In 2017 15th International Conference on Quality in Research (QiR). International Symposium on Electrical and Computer Engineering, p. 450

  54. J. Lin, J. Xu, and Y. Yang, Numerical analysis of the effect of MoS2 interface layers on copper-zinc-tin-sulfur thin film solar cells. Optik 201, 163496 (2020).

    Article  CAS  Google Scholar 

  55. M. Moustafa, T. Al Zoubi, and S. Yasin, Numerical analysis of the role of p-MoSe2 interfacial layer in CZTSe thin-film solar cells using SCAPS simulation. Optik 247, 167885 (2021).

    Article  CAS  Google Scholar 

  56. C.W. Jang, and S.H. Choi, Self-powered semitransparent/flexible doped-graphene/WS2 vertical-heterostructure photodetectors. J. Alloys Compd. 901, 163685 (2022).

    Article  CAS  Google Scholar 

  57. J. Chen, Y. Han, X. Kong, X. Deng, H.J. Park, Y. Guo, S. **, Z. Qi, Z. Lee, Z. Qiao, and R.S. Ruoff, The origin of improved electrical double-layer capacitance by inclusion of topological defects and dopants in graphene for supercapacitors. Angew. Chem. Int. Ed. 55(44), 13822 (2016).

    Article  CAS  Google Scholar 

  58. K. Zhang, R. Xu, C. Zhen, Y. Wu, G. Li, L. Ma, and D. Hou, Effects of terminated atoms, porosity and drilling orientations on the band structure of porous silicon. Comput. Mater. Sci. 136, 126 (2017).

    Article  CAS  Google Scholar 

  59. N. Naderi, and M. Moghaddam, Ultra-sensitive UV sensors based on porous silicon carbide thin films on silicon substrate. Ceram. Int. 46, 13821 (2020).

    Article  CAS  Google Scholar 

  60. M.K. Sahoo, and P. Kale, Restructured porous silicon for solar photovoltaic: a review. Microporous Mesoporous Mater. 289, 109619 (2019).

    Article  CAS  Google Scholar 

  61. N. Ott, M. Nerding, G. Müller, R. Brendel, and H.P. Strunk, Evolution of the microstructure during annealing of porous silicon multilayers. J. Appl. Phys. 95, 497 (2004).

    Article  CAS  Google Scholar 

  62. X. Li, C. Chen, Y. Yang, Z. Lei, and H. Xu, 2D Re-based transition metal chalcogenides progress, challenges, and opportunities. Adv. Sci. 7, 2002320 (2020).

    Article  CAS  Google Scholar 

  63. Y.C. Wang, B.S. Lin, and Z.P. Yang, Short wavelength enhanced phototransistor with n-doped porous silicon layer. Electron. Lett. 52, 947 (2016).

    Article  CAS  Google Scholar 

  64. D.H. Shin, J.H. Kim, J.H. Kim, C.W. Jang, S.W. Seo, H.S. Lee, S. Kim, and S.H. Choi, Graphene/porous silicon Schottky-junction solar cells. J. Alloys Compd. 715, 291 (2017).

    Article  CAS  Google Scholar 

  65. J.H. Kim, D.H. Shin, H.S. Lee, C.W. Jang, J.M. Kim, S.W. Seo, S. Kim, and S.H. Choi, Enhancement of efficiency in graphene/porous silicon solar cells by co-do** graphene with gold nanoparticles and bis(trifluoromethanesulfonyl)-amide. J. Mater. Chem. C 5, 9005 (2017).

    Article  Google Scholar 

  66. Y. Shen, M. Yu, R. Huang, and Q. Cheng, Numerical simulation of n-MoSe2/p-Si solar cells by AFORS-HET. Adv. Theory Simul. 7, 2100551 (2022).

    Article  Google Scholar 

  67. R. Huang, M. Yu, Q. Yang, L. Zhang, Y. Wu, and Q. Cheng, Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells. Comput. Mater. Sci. 178, 109600 (2020).

    Article  CAS  Google Scholar 

  68. K. Sobayel, M. Shahinuzzaman, N. Amin, M.R. Karim, M.A. Dar, R. Gul, M.A. Alghoulg, K. Sopiana, A.K.M. Hasana, and M. Akhtaruzzamanac, Efficiency enhancement of CIGS solar cell by WS2 as window layer through numerical modelling tool. Sol. Energy 207, 479 (2020).

    Article  CAS  Google Scholar 

  69. Cardador D, Vega D, Rodríguez Á (2015) Impact of the absorption in transmittance and reflectance on macroporous silicon photonic crystals, In 2015 10th Spanish Conference on Electron Devices, p. 1

  70. Ç. Duman, and F. Kaburcuk, A numerical study of ZnO random lasers using FDTD method. Optik 181, 993 (2019).

    Article  CAS  Google Scholar 

  71. F. Kaburcuk and Ç. Duman, Analysis of light scattering from anisotropic particles using FDTD method. J. Mod. Opt. 66, 1777 (2019).

    Article  Google Scholar 

  72. E.A. Wahabaalla, E.M. El-Menyawy, T. Abdallah, and G.M. Youssef, Improving the photoelectrical conversion efficiency of silicon solar cells using ZnO: Al/porous silicon double antireflective layers. Appl. Phys. A 125, 1 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Marc Burgelman and their team from Ghent University, Belgium, for providing SCAPS-1D software package.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BA and ÇD. The first draft of the manuscript was written by BA and ÇD, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Büşra Aydin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, B., Duman, Ç. Optimization of Electrode, Interlayer and Absorber Layers of a Gr/ReS2/PSi/p-cSi Photovoltaic Solar Cell with SCAPS. J. Electron. Mater. 52, 4809–4821 (2023). https://doi.org/10.1007/s11664-023-10415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10415-9

Keywords

Navigation