Log in

Bandgap engineering of PEDOT:PSS/rGO a hole transport layer for SiNWs hybrid solar cells

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Silicon nanowire (SiNW) hybrid solar cell has been fabricated using PEDOT:PSS and rGO-PEDOT:PSS as the organic hole transport layer. The electrical characterization of the as-fabricated solar cell was done by both dark and photo J–V characteristic curves. Vertically aligned arrays of SiNWs have been synthesized by following the electroless metal-assisted chemical etching method, as confirmed by both the scanning electron microscopy and atomic force microscopy images. The structural properties of SiNWs, PEDOT:PSS and rGO-PEDOT:PSS were characterized with the help of X-ray diffraction and Raman characterization techniques. The bandgap of PEDOT:PSS comes out to be 1.77 eV as obtained from the UV–visible and photoluminescence spectra. In addition, the bandgap of PEDOT:PSS was 1.76 eV and for reduced graphene oxide (rGO) it was 0.04 eV, as obtained from the cyclic voltammetry curve. rGO-PEDOT:PSS heterojunction showed excellent J–V characteristic property in the dark and under the illumination of 1 sun. Hence the incorporation of rGO in PEDOT:PSS can improve the photovoltaic properties by increasing the conductivity of the hole transport layer, making a good interface between organic–inorganic heterojunction as well as by reducing the recombination of electron–hole pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Moiz S A, Alahmadi A N M and Aljohani A J 2020 Energies 13 3797

    Article  Google Scholar 

  2. Bhujel R, Rizal U, Agarwal A, Swain B S and Swain B P 2018 J. Mater. Eng. Perform. 27 2655

    Article  CAS  Google Scholar 

  3. Li P, Mohamed M I O, Xu C, Wang X and Tang X 2020 Org. Electron. 78 105582

    Article  CAS  Google Scholar 

  4. Wang J, Wang H, Prakoso A B, Togonal A S, Hong L, Jiang C et al 2015 Nanoscale 7 4559

    CAS  Google Scholar 

  5. Wang H, Wang J, Hong L, Tan Y H and Tan C S 2016 Nanoscale Res. Lett. 11 1

    Article  Google Scholar 

  6. Shen R, Liu M, Zhou Y, Li F, Wang H, Yang Y et al 2017 Sol. RRL 1 1

    Article  CAS  Google Scholar 

  7. Singh E and Nalwa H S 2015 RSC Adv. 5 73575

    Article  CAS  Google Scholar 

  8. Jiang X, Wang Z, Han W, Liu Q, Lu S, Wen Y et al 2017 Appl. Surf. Sci. 407 398

    Article  CAS  Google Scholar 

  9. Van Trinh P, Hong P N, Thang B H, Hong N T, Thiet D V, Van Chuc N et al 2017 Adv. Mater. Sci. Eng. 2017 Article ID 2362056

  10. Park Y, Choi K S and Kim S Y 2012 Phys. Status Solidi Appl. Mater. Sci. 209 1363

    Article  CAS  Google Scholar 

  11. Wang S, Huang X, Sun H and Wu C 2017 Nanoscale Res. Lett. 12 619

    Article  Google Scholar 

  12. Park M U, Song M, Lee S M, Ryu S and Chung D-W 2018 J. Nanosci. Nanotechnol. 18 6147

    Article  CAS  Google Scholar 

  13. Lee J and Choi W 2015 J. Electrochem. Soc. 162 A935

    Article  CAS  Google Scholar 

  14. Mohsennia M, Bidgoli M M and Boroumand F A 2015 J. Nanophoton. 9 093081

    Article  Google Scholar 

  15. Anh N N, Chuc N V, Thang B H, Nhat P V, Hao N, Phuong D D et al 2020 Glob. Chall. 4 2000010

    Article  Google Scholar 

  16. Shafiee A, Salleh M M and Yahaya M 2011 Sains. Malays. 40 173

    CAS  Google Scholar 

  17. Tiwari D C, Dwivedi S K, Dipak P and Chandel T 2018 AIP Conf. Proc. 1953 3

    Google Scholar 

  18. Meiss J, Uhrich C L, Fehse K, Pfuetzner S, Riede M K and Leo K 2008 Photonics Sol. Energy Syst. II 7002 700210

    Article  Google Scholar 

  19. Hilal M and Han J I 2018 Sol. Energy 174 743

    Article  CAS  Google Scholar 

  20. Yu X, Shen X, Mu X, Zhang J, Sun B, Zeng L et al 2015 Sci. Rep. 5 1

    Google Scholar 

Download references

Acknowledgement

We acknowledge Dr Ramdas Pai and Vasanthi Pai’s endowment fund for supporting financially to carry out this whole project work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhu P Swain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhujel, R., Rai, S., Deka, U. et al. Bandgap engineering of PEDOT:PSS/rGO a hole transport layer for SiNWs hybrid solar cells. Bull Mater Sci 44, 72 (2021). https://doi.org/10.1007/s12034-021-02376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02376-8

Keywords

Navigation