Log in

Scalable Galvanic Isolators with High Isolation Realized by Magnetoelectric Gyrators

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A scalable, passive galvanic isolator, consisting of a ferrite/piezoelectric magnetoelectric (ME) composite with a coil wound round it, was fabricated and developed. In this scheme, the two ports of the isolator exhibit corresponding inductive/capacitive behaviors, and an induced impedance difference facilitates a high isolation realization for signal transferring/blocking. Non-reciprocity of the device was characterized and verified by its mutual transfer impedance. In addition, a key parameter defined by the self-impedance transfer ratio of |Z22|/|Z11| was introduced to quantitatively describe the isolating performance, and the measured |Z22|/|Z11| reached as high as 1220 at the optimum bias of H = 190 Oe. The proposed ferrite/piezoelectric ME isolator exhibiting significant desired properties is of importance for signal propagation/blocking due to its impedance difference and non-reciprocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Spataro, N. Spina, and E. Ragonese, Package-scale galvanic isolators based on radio frequency coupling: micro-antenna design. Electronics 11, 291 (2022).

    Article  CAS  Google Scholar 

  2. J. Vague, J.C. Melgarejo, V.E. Boria, M. Guglielmi, R. Moreno, M. Reglero, R. Mata, I. Montero, D. González-Iglesias, B. Gimeno, A. Gómez, A. Vegas, and D. Raboso, Experimental validation of multipactor effect for ferrite materials used in L- and S- band nonreciprocal microwave components. IEEE Trans. Microw. Theory. 67, 2151–2161 (2019).

    Article  Google Scholar 

  3. V. Laur, J.P. Gouavogui, and B. Balde, C-band hybrid 3-D-printed microwave isolator. IEEE Trans. Microw. Theory. 69, 1579–1585 (2021).

    Article  Google Scholar 

  4. F. Zhang, T. Zhao, C.Y. Ma, and D.F. Pan, 4-port digital isolator based on on-chip transformer. J. Semicond 39, 115003 (2018).

    Article  Google Scholar 

  5. P.F. Miaja, A. Lopez, and M. Arias, An analog magnetic isolator for space power applications. Energies 13, 4504 (2020).

    Article  Google Scholar 

  6. S.Y. Ma, J.H. Fe.g., T.T. Zhao, and B.X. Chen, A fully isolated amplifier based on charge-balanced SAR converters. IEEE Transact. Circuit. Syst. I Regul.Paper. 65, 1795–1804 (2018).

    Article  Google Scholar 

  7. A. Sabbar, S. Madhusoodhanan, H. Tran, B.Z. Dong, J.B. Wang, A. Mantooth, S.Q. Yu, and Z. Chen, Design and optimization of high temperature optocouplers as galvanic isolation. Sci. Rep. 12, 2228 (2022).

    Article  CAS  Google Scholar 

  8. S. Madhusoodhanan, A. Sabbar, H. Tran, B.Z. Dong, J.B. Wang, A. Mantooth, S.Q. Yu, and Z. Chen, High temperature analysis of GaN based MQW photodetector for optical galvanic isolations in high density integrated power modules. IEEE J Em Sel Top Power Electron 9, 3877–3882 (2021).

    Article  Google Scholar 

  9. M. Noferesti, and T. Djerafi, A tunable ferrite isolator for 30 GHz millimeter-wave applications. IEEE Trans. Magn 57, 4001707 (2021).

    Article  CAS  Google Scholar 

  10. S. Madhusoodhanan, A. Sabbar, H. Tran, P.Y. Lai, D. Gonzalez, A. Mantooth, S.Q. Yu, and Z. Chen, High-temperature analysis of optical coupling using AlGaAs/GaAs LEDs for high-density integrated power modules. Sci. Rep. 12, 3168 (2022).

    Article  CAS  Google Scholar 

  11. G. D. Shi, R. H. Yan, J. X. **, L. N. He, W. X. Ding, W. J. Pan, Z. Q. Liu, F. Yang and D. P. Chen, A compact 6ns propagation delay 200Mbps 100 kV/μs CMR capacitively coupled direction configurable 4-channel digital isolator in standard CMOS,In: 2018 25th IEEE International Conference on Electronics, Circuits and Systems 721–724 (2018).

  12. M. Angerer, R. Schwanninger, and M. Marz, Active common-mode filter for capacitive-coupled isolated signalling. Electron. Lett. 56, 73–75 (2020).

    Article  CAS  Google Scholar 

  13. S.S. Mirfakhraei, Y. Audet, A. Hassan, and M. Sawan, A fully integrated low-power Hall-based isolation amplifier with IMR greater than 120dB. IEEE Transact. Circ. Syst.I Regul. Paper 69, 1385–1394 (2022).

    Article  Google Scholar 

  14. C.W. Liang, E. Balaban, E. Ahmad, J. Sexton, and M. Missous, A quantum well Hall effect linear isolator with wide frequency response and low gain temperature coefficient. Sens. Actuator. A 263, 54–62 (2017).

    Article  CAS  Google Scholar 

  15. C. Re.g., M.D. Cubells-Beltran, D. Ramirez, S. Cardoso, and P.P. Freitas, Electrical isolators based on tunneling magnetoresistance technology. IEEE Trans. Magn. 44, 4011–4014 (2008).

    Article  Google Scholar 

  16. S. Park, J. Kim, and S. Jo, Modeling of giant magnetoresistance isolator for high speed digital data transmission utilizing spin valves. J. Appl. Phys. 97, 10E106 (2005).

    Article  Google Scholar 

  17. S.S. Mirfakhraei, Y. Audet, A. Hassan, and M. Sawan, A small footprint digital isolator based on CMOS integrated Hall-effect sensor. IEEE Sens. J. 22, 412–418 (2022).

    Article  CAS  Google Scholar 

  18. Q.L. He, T.L. Hughes, N.P. Armitage, Y. Tokura, and K.L. Wang, Topological spintronics and magnetoelectronics. Nat. Mater. 21, 15–23 (2022).

    Article  CAS  Google Scholar 

  19. B. Jana, K. Ghosh, K. Rudrapal, P. Gaur, P.K. Shihabudeen, and A.R. Chaudhuri, Recent progress in flexible multiferroics. Front. Phys.Laus. 9, 822005 (2022).

    Article  Google Scholar 

  20. J.T. Zhang, B.F. Ge, Q.F. Zhang, D.A. Filippov, J. Wu, J.G. Tao, Z.C. Jia, L.Y. Jiang, L.Z. Cao, and G. Srinivasan, Non-reciprocal voltage-current and impedance gyration effects in ferrite/piezoelectric toroidal magnetoelectric composites. Appl. Phys. Lett. 118, 042402 (2021).

    Article  CAS  Google Scholar 

  21. Z.Q. Chu, M. PourhosseiniAsl, and S.X. Dong, Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 51, 243001 (2018).

    Article  Google Scholar 

  22. Q. Mao, J.G. Wu, Z.Q. Hu, Y.W. Xu, Y.J. Du, Y.B. Hao, M.M. Guan, C.Y. Wang, Z.G. Wang, Z.Y. Zhou, S.X. Dong, W. Ren, M. Liu, and Z.D. Jiang, Magnetoelectric devices based on magnetoelectric bulk composites. J. Mater. Chem. C 9, 5594–5614 (2021).

    Article  CAS  Google Scholar 

  23. R. Gupta, and R.K. Kotnala, A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications. J. Mater. Sci. 57, 12710–12737 (2022).

    Article  CAS  Google Scholar 

  24. X.F. Liang, H.H. Chen, and N.X. Sun, Magnetoelectric materials and devices. APL Mater 9, 041114 (2021).

    Article  CAS  Google Scholar 

  25. J.T. Zhang, D.Y. Chen, D.A. Filippov, K. Li, Q.F. Zhang, L.Y. Jiang, W.W. Zhu, L.Z. Cao, and G. Srinivasan, Bidirectional tunable ferrite-piezoelectric trilayer magnetoelectric inductors. Appl. Phys. Lett. 113, 113502 (2018).

    Article  Google Scholar 

  26. J.T. Zhang, H.W. Zhao, Q.F. Zhang, D.A. Filippov, J. Wu, J.G. Tao, L.Y. Jiang, L.Z. Cao, and G. Srinivasan, Disentangling the power transfer process by non-contact optical measurement in nickel-zinc ferrite/piezoelectric magnetoelectric gyrators. J. Magn. Magn. Mater. 524, 167680 (2021).

    Article  CAS  Google Scholar 

  27. J.P. Zhou, Y.X. Zhang, G.B. Zhang, and P. Liu, Magnetodielectric effect and electric-induced magnetic permeability in magnetoelectric laminate composite under low inspiring signal. J. Appl. Phys. 113, 043907 (2013).

    Article  Google Scholar 

  28. C. Tu, C.Z. Dong, Z.Q. Chu, H.H. Chen, X.F. Liang, and N.X. Sun, A passive isolator realized by magnetoelectric laminate composites. Appl. Phys. Lett. 113, 262904 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 61973279, 62004177, 62073299), Foundation of Excellent Young Scholars in Henan Province (Grant No. 222300420096), Foundation for University Young Backbone Scholars in Henan Province (Grant No. 2020GGJS122), Key Scientific Research Project of Universities in Henan Province (Grant No. 20A510015) and Project of Central Plains Science and Technology Innovation Leading Talents (Grant No.224200510026). The study at Russia was supported by the Russian Science Foundation Project (Grant No. 22-19-000763).

Funding

National Natural Science Foundation of China, 61973279, Jitao Zhang, 62004177, Qingfang Zhang, 62073299, Liying Jiang, Foundation of Excellent Young Scholars in Henan Province, 222300420096, Jitao Zhang, Foundation for University Young Backbone Scholars in Henan Province, 2020GGJS122, Jitao Zhang, Project of Central Plains Science and Technology Innovation Leading Talents, 224200510026, Liying Jiang, Russian Science Foundation Project, 22-19-000763, D. A. Filippov, Key Scientific Research Project of Universities in Henan Province, 20A510015, Qingfang Zhang

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, B., Zhang, Q. et al. Scalable Galvanic Isolators with High Isolation Realized by Magnetoelectric Gyrators. J. Electron. Mater. 52, 1518–1525 (2023). https://doi.org/10.1007/s11664-022-10135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10135-6

Keywords

Navigation