Log in

Research on a miniaturized VLF antenna array based on a magnetoelectric heterojunction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper focuses on miniature magnetoelectric (ME) antennas based on ferromagnetic/piezoelectric heterostructures, which produce electromagnetic (EM) radiation through the physical oscillation of electric dipoles and magnetic moments. ME antennas with a size of only one-ten-thousandth that of traditional antennas are being designed and fabricated and they provide low energy consumption and high radiation efficiency. However, the output response of such devices can be improved, the operation frequency range can be broadened under high-output conditions through series and parallel connections among units, and the multifrequency point transmission and reception of signals can be achieved in the very low-frequency (VLF) band. The test results show that the detection limit of the ME antenna unit is 0.1/\(\sqrt {\text{HZ}}\) nT at 26 kHz and the radiant magnetic field at 1.2 m is 1.06 nT (input power of 10 mW). Through three units in series, the ME output response is increased to 1.97 times that of a single unit and the intensity of the ME radiation signal is approximately 2.6 times that of a unit. Through the parallelization of three units, the − 3 dB operation frequency range of the ME receiving antenna is widened by a factor of 1.86 and that of the ME transmitting antenna is widened by a factor of 2.18. This study provides a feasible scheme and technical path for the design and fabrication of future ME antenna arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. H. Chen, X. Liang, C. Dong, Y. He, N. Sun, M. Zaeimbashi, Y. He, Y. Gao, P.V. Parimi, H. Lin, N.X. Sun, Ultra-compact mechanical antennas. Appl. Phys. Lett. 117, 170501 (2020)

    Article  CAS  Google Scholar 

  2. J.A. Bickford, A.E. Duwel, M.S. Weinberg, R.S. McNabb, D.K. Freeman, P.A. Ward, Performance of electrically small conventional and mechanical antennas. IEEE Trans. Antennas Propag. 67, 2209–2223 (2019)

    Article  Google Scholar 

  3. H.C. Burch, A. Garraud, M.F. Mitchell, R.C. Moore, D.P. Arnold, Experimental generation of ELF radio signals using a rotating magnet. IEEE Trans. Antennas Propag. 66, 6265–6272 (2018)

    Article  Google Scholar 

  4. Y. Lin, N. Cai, J. Zhai, G. Liu, C.W. Nan, Giant magnetoelectric effect in multiferroic laminated composites. Phys. Rev. B 72, 012405 (2005)

    Article  Google Scholar 

  5. Z. Yao, Y.E. Wang, S. Keller, G.P. Carman, Bulk acoustic wave-mediated multiferroic antennas: architecture and performance bound. IEEE Trans. Antennas Propag. 63, 3335–3344 (2015)

    Article  Google Scholar 

  6. T. Nan, H. Lin, Y. Gao, A. Matyushov, G. Yu, H. Chen, N. Sun, S. Wei, Z. Wang, M. Li, X. Wang, A. Belkessam, R. Guo, B. Chen, J. Zhou, Z. Qian, Y. Hui, M. Rinaldi, M.E. McConney, B.M. Howe, Z. Hu, J.G. Jones, G.J. Brown, N.X. Sun, Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 8, 296 (2017)

    Article  Google Scholar 

  7. J. Xu, C.M. Leung, X. Zhuang, J. Li, S. Bhardwaj, J. Volakis, D. Viehland, A low frequency mechanical transmitter based on magnetoelectric heterostructures operated at their resonance frequency. Sensors 19, 853 (2019)

    Article  CAS  Google Scholar 

  8. C. Dong, Y. He, M. Li, C. Tu, Z. Chu, X. Liang, H. Chen, Y. Wei, M. Zaeimbashi, X. Wang, H. Lin, Y. Gao, N.X. Sun, A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas. IEEE Antennas Wirel. Propag. Lett. 19, 398–402 (2020)

    Article  Google Scholar 

  9. Z. Yao, S. Tiwari, T. Lu, J. Rivera, K.Q.T. Luong, R.N. Candler, G.P. Carman, Y.E. Wang, Modeling of multiple dynamics in the radiation of bulk acoustic wave antennas. IEEE J. Multisc. Multiphys. Comput. Technol. 5, 5–18 (2019)

    Article  Google Scholar 

  10. M. Zaeimbashi, M. Nasrollahpour, A. Khalifa et al., Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat. Commun. 12, 3141 (2021)

    Article  CAS  Google Scholar 

  11. C. Kirchhof, M. Krantz, I. Teliban, R. Jahns, S. Marauska, B. Wagner, R. Knöchel, M. Gerken, D. Meyners, E. Quandt, Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. 102, 232905 (2013)

    Article  Google Scholar 

  12. H. Lin, M. Zaeimbashi, N. Sun, X. Liang, H. Chen, C. Dong, A. Matyushov, X. Wang, Y. Guo, Y. Gao, N.X. Sun, NEMS magnetoelectric antennas for biomedical application, in 2018 IEEE International Microwave Biomedical Conference (IMBioC) (IEEE, Philadelphia, PA, USA, 2018), pp. 13–15

  13. J. Ou-Yang, X. Liu, H. Zhou, Z. Zou, Y. Yang, J. Li, Y. Zhang, B. Zhu, S. Chen, X. Yang, Magnetoelectric laminate composites: an overview of methods for improving the DC and low-frequency response. J. Phys. D 51, 324005 (2018)

    Article  Google Scholar 

  14. J. Zhai, Z. **ng, S. Dong, J. Li, D. Viehland, Thermal noise cancellation in symmetric magnetoelectric bimorph laminates. Appl. Phys. Lett. 93, 072906 (2008)

    Article  Google Scholar 

  15. Y. Huang, et al., Electromagnetic Fields and Microwave Technology (Bei**g, CN, 2012)

  16. C. **e, et al., Electromagnetic Fields and Electromagnetic Waves (Chendu, Sichuan, CN, 2005)

  17. D.K. Cheng, Fundamentals of Engineering Electromagnetics (Pearson, London, 1993)

    Google Scholar 

  18. Z. **ng, J. Zhai, J. Gao, J. Li, D. Viehland, Magnetic-field sensitivity enhancement by magnetoelectric sensor arrays. IEEE Electron Device Lett. 30, 445–447 (2009)

    Article  CAS  Google Scholar 

  19. S. Dong, J. Zhai, J.F. Li, D. Viehland, Small dc magnetic field response of magnetoelectric laminate composites. Appl. Phys. Lett. 88, 082907 (2006)

    Article  Google Scholar 

  20. Z. Wu, Z. **ang, Y. Jia, Y. Zhang, H. Luo, Electrical impedance dependence on the direct and converse magnetoelectric resonances in magnetostrictive/piezoelectric laminated composites. J. Appl. Phys. 112, 106102 (2012)

    Article  Google Scholar 

  21. S. Wei, X. Liao, H. Zhang, J. Pang, Y. Zhou, Recent progress of fluxgate magnetic sensors: basic research and application. Sensors 21, 1500 (2021)

    Article  Google Scholar 

  22. V. Schultze, B. Schillig, R. Ijsselsteijn, T. Scholtes, S. Woetzel, R. Stolz, An optically pumped magnetometer working in the light-shift dispersed mz mode. Sensors 17, 561 (2017)

    Article  Google Scholar 

  23. C. Ziółkowski, J.M. Kelner, L. Nowosielski, M. Wnuk, Modeling the distribution of the arrival angle based on transmitter antenna pattern, in 2017 11th European Conference on Antennas and Propagation (EUCAP) (IEEE, Paris, France, 2017), pp. 1582–1586

  24. L. Lv, X. Yao, L. Gan, X. Zhang, J.P. Zhou, Magnetoelectric anisotropy in laminate composite for detecting magnetic field. Funct. Mater. Lett. 12, 1850098 (2018)

    Article  Google Scholar 

Download references

Funding

Open access funding was provided by Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

YZ designed the study and performed the experiments; LJ and PS performed the experiments, analyzed the data, and wrote the manuscript.

Corresponding authors

Correspondence to Yongqing Peng or Shi Chen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., **g, L., Shi, P. et al. Research on a miniaturized VLF antenna array based on a magnetoelectric heterojunction. J Mater Sci: Mater Electron 33, 4211–4224 (2022). https://doi.org/10.1007/s10854-021-07616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07616-5

Navigation