Log in

Synthesis of Nanostructured Ferrites and Cation Distribution Studies by X-ray Magnetic Circular Dichroism, Mössbauer Spectroscopy, and X-ray Absorption Spectroscopy

  • Topical Collection: Synthesis and Advanced Characterization of Magnetic Oxides
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present an extensive review of different techniques, such as x-ray magnetic circular dichroism, Mössbauer spectroscopy, and x-ray absorption spectroscopy, for determining the cation distribution in ferrites, and a comparison between these techniques is established. We describe the basic principles of these techniques to find the cation occupancies and highlight the important results obtained from these measurements on ferrite nanoparticles and thin films. Cation distribution, an important characteristic that controls the structural, electrical, and magnetic properties of ferrites, is strongly affected by the synthesis methods. Therefore, various synthesis techniques are reported for preparing ferrite nanoparticles and thin films. A summary correlating these techniques and the cation distribution in ferrite nanoparticles and thin films is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Kiyomura, Y. Maruo, and M. Gomi, Electrical properties of MgO insulating layers in spin-dependent tunneling junctions using Fe3O4. J. Appl. Phys. 88, 4768–4771 (2000).

    Article  CAS  Google Scholar 

  2. X. Sui and M.H. Kryder, Magnetic easy axis randomly in-plane oriented barium hexaferrite thin film media. Appl. Phys. Lett. 63, 1582–1584 (1993).

    Article  CAS  Google Scholar 

  3. B.Y. Wong, X. Sui, D.E. Laughlin, and M.H. Kryder, Microstructural investigations of barium ferrite longitudinal thin-film media. J. Appl. Phys. 75, 5966–5968 (1994).

    Article  CAS  Google Scholar 

  4. A. Lak, S. Disch, and P. Bender, Embracing defects and disorder in magnetic nanoparticles. Adv. Sci. 8, 2002682 (2021).

    Article  CAS  Google Scholar 

  5. X. Zeng, Z. Hou, J. Ju, L. Gao, J. Zhang, and Y. Peng, The cation distributions of Zn-doped normal spinel MgFe2O4 ferrite and its magnetic properties. Materials 15, 2422 (2022).

    Article  CAS  Google Scholar 

  6. J. Stöhr, H.A. Padmore, S. Anders, T. Stammler, and M.R. Scheinfein, Principles of x-ray magnetic dichroism spectromicroscopy. Surf. Rev. Lett. 05, 1297–1308 (1998).

    Article  Google Scholar 

  7. T. Abbas, Y. Khan, M. Ahmad, and S. Anwar, X-ray diffraction study of the cation distribution in the Mn-Zn-ferrites. Solid State Commun. 82, 701–703 (1992).

    Article  CAS  Google Scholar 

  8. S. Thakur, S.C. Katyal, A. Gupta, V.R. Reddy, S.K. Sharma, M. Knobel, and M. Singh, Nickel−Zinc ferrite from reverse micelle process: structural and magnetic properties, Mössbauer spectroscopy characterization. J. Phys. Chem. C 113, 20785–20794 (2009).

    Article  CAS  Google Scholar 

  9. D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, and A. Corrias, A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn Co, Ni). J. Phys. Chem. C 113, 8606–8615 (2009).

    Article  CAS  Google Scholar 

  10. H. Suzuki, N. Tokitoh, R. Okazaki, S. Nagase, and M. Goto, Synthesis, structure, and reactivity of the first kinetically stabilized silanethione. J. Am. Chem. Soc. 120, 11096–11105 (1998).

    Article  CAS  Google Scholar 

  11. E. Bartolomé, P. Cayado, E. Solano, S. Ricart, J. Gázquez, B. Mundet, M. Coll, T. Puig, X. Obradors, M. Valvidares, J. Herrero-Martín, P. Gargiani, and E. Pellegrin, Magnetic stability against calcining of microwave-synthesized CoFe2O4 nanoparticles. New J. Chem. 40, 6890–6898 (2016).

    Article  Google Scholar 

  12. C. Moya, A. Fraile Rodríguez, M. Escoda-Torroella, M. García del Muro, S.R.V. Avula, C. Piamonteze, X. Batlle, and A. Labarta, Crucial role of the Co cations on the destabilization of the ferrimagnetic alignment in Co-ferrite nanoparticles with tunable structural defects. J. Phys. Chem. C 125, 691–701 (2021).

    Article  CAS  Google Scholar 

  13. C.E. Rodríguez Torres, G.A. Pasquevich, P.M. Zélis, F. Golmar, S.P. Heluani, S.K. Nayak, W.A. Adeagbo, W. Hergert, M. Hoffmann, A. Ernst, P. Esquinazi, and S.J. Stewart, Oxygen-vacancy-induced local ferromagnetism as a driving mechanism in enhancing the magnetic response of ferrites. Phys. Rev. B 89, 104411 (2014).

    Article  Google Scholar 

  14. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, and A. Kostikas, Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B 54, 9288–9296 (1996).

    Article  CAS  Google Scholar 

  15. M. Siddique, and N.M. Butt, Effect of particle size on degree of inversion in ferrites investigated by Mössbauer spectroscopy. Physica B 405, 4211–4215 (2010).

    Article  CAS  Google Scholar 

  16. S.M. Patange, S.E. Shirsath, S.S. Jadhav, and K.M. Jadhav, Cation distribution study of nanocrystalline NiFe2−xCrxO4 ferrite by XRD, magnetization and Mössbauer spectroscopy. Phys. Status Solidi (A) 209, 347–352 (2012).

    Article  CAS  Google Scholar 

  17. A. Hashhash, I. Bobrikov, M. Yehia, M. Kaiser, and E. Uyanga, Neutron diffraction and Mössbauer spectroscopy studies for Ce doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 503, 166624 (2020).

    Article  CAS  Google Scholar 

  18. D. Carta, G. Mountjoy, G. Navarra, M.F. Casula, D. Loche, S. Marras, and A. Corrias, X-ray absorption investigation of the formation of Cobalt ferrite nanoparticles in an aerogel silica matrix. J. Phys. Chem. C 111, 6308–6317 (2007).

    Article  CAS  Google Scholar 

  19. F.W. Harrison, W.P. Osmond, and R.W. Teale, Cation distribution and magnetic moment of manganese ferrite. Phys. Rev. 106, 865–866 (1957).

    Article  CAS  Google Scholar 

  20. M.H. Mahmoud, H.H. Hamdeh, A.I. Abdel-Mageed, A.M. Abdallah, and M.K. Fayek, Effect of HEBM on the cation distribution of Mn-ferrite. Physica B 291, 49–53 (2000).

    Article  CAS  Google Scholar 

  21. C. Liu, Y. Li, T. Shi, Q. Peng, and F. Gao, Oxygen defects stabilize the crystal structure of MgAl2O4 spinel under irradiation. J. Nucl. Mater. 527, 151830 (2019).

    Article  CAS  Google Scholar 

  22. D.S. Mathew, and R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in micro-emulsions. Chem. Eng. J. 129, 51–65 (2007).

    Article  CAS  Google Scholar 

  23. T.F. Marinca, I. Chicinaş, O. Isnard, V. Pop, and F. Popa, Synthesis, structural and magnetic characterization of nanocrystalline nickel ferrite—NiFe2O4 obtained by reactive milling. J. Alloy. Compd. 509, 7931–7936 (2011).

    Article  CAS  Google Scholar 

  24. T.F. Marinca, I. Chicinaş, and O. Isnard, Synthesis, structural and magnetic characterization of nanocrystalline CuFe2O4 as obtained by a combined method reactive milling, heat treatment and ball milling. Ceram. Int. 38, 1951–1957 (2012).

    Article  CAS  Google Scholar 

  25. Y. Todaka, M. Nakamura, S. Hattori, K. Tsuchiya, and M. Umemoto, Synthesis of ferrite nanoparticles by mechanochemical processing using a ball mill. Mater. Trans. 44, 277–284 (2003).

    Article  CAS  Google Scholar 

  26. D. Chen, and Y. Zhang, Synthesis of NiFe2O4 nanoparticles by a low temperature microwave-assisted ball milling technique. Sci. China Technol. Sci. 55, 1535–1538 (2012).

    Article  CAS  Google Scholar 

  27. M.A. Cobos, P. de la Presa, I. Llorente, A. García-Escorial, A. Hernando, and J.A. Jiménez, Effect of preparation methods on magnetic properties of stoichiometric zinc ferrite. J. Alloy. Compd. 849, 156353 (2020).

    Article  CAS  Google Scholar 

  28. V. Šepelák, and K.D. Becker, Comparison of the cation inversion parameter of the nanoscale milled spinel ferrites with that of the quenched bulk materials. Mater. Sci. Eng., A 375–377, 861–864 (2004).

    Article  Google Scholar 

  29. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina, P. Urbánek, M. Machovsky, D. Skoda, M. Masař, and M. Holek, Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties. Ultrason. Sonochem. 40, 773–783 (2018).

    Article  CAS  Google Scholar 

  30. R. Singh Yadav, I. Kuřitka, J. Vilcakova, T. Jamatia, M. Machovsky, D. Skoda, P. Urbánek, M. Masař, M. Urbánek, L. Kalina, and J. Havlica, Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason. Sonochem. 61, 104839 (2020).

    Article  CAS  Google Scholar 

  31. P.P. Goswami, H.A. Choudhury, S. Chakma, and V.S. Moholkar, Sonochemical synthesis of cobalt ferrite nanoparticles. Int. J. Chem. Eng. 2013, 934234 (2013).

    Article  Google Scholar 

  32. M. Sivakumar, A. Towata, K. Yasui, T. Tuziuti, T. Kozuka, Y. Iida, M.M. Maiorov, E. Blums, D. Bhattacharya, N. Sivakumar, and M. Ashok, Ultrasonic cavitation induced water in vegetable oil emulsion droplets – a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization. Ultrason. Sonochem. 19, 652–658 (2012).

    Article  CAS  Google Scholar 

  33. A.R. Abbasian, S.S. Hosseini, M. Shayesteh, M. Shafiee, and M. Rafigh Esmaeilzaei, Ultrasonic-assisted solvothermal synthesis of self-assembled copper ferrite nanoparticles. Int. J. Nano Dimens. 11, 130–144 (2020).

    CAS  Google Scholar 

  34. M.A.S. Amulya, H.P. Nagaswarupa, M.R.A. Kumar, C.R. Ravikumar, and K.B. Kusuma, Enhanced photocatalytic and electrochemical properties of Cu doped NiMnFe2O4 nanoparticles synthesized via probe sonication method. Appl. Surf. Sci. Adv. 2, 100038 (2020).

    Article  Google Scholar 

  35. P.P. Goswami, H.A. Choudhury, S. Chakma, and V.S. Moholkar, Sonochemical synthesis and characterization of Manganese Ferrite nanoparticles. Ind. Eng. Chem. Res. 52, 17848–17855 (2013).

    Article  CAS  Google Scholar 

  36. H.A. Choudhury, A. Choudhary, M. Sivakumar, and V.S. Moholkar, Mechanistic investigation of the sonochemical synthesis of zinc ferrite. Ultrason. Sonochem. 20, 294–302 (2013).

    Article  CAS  Google Scholar 

  37. Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, and M. Li, Hydrothermal synthesis of nanomaterials. J. Nanomater. 2020, 8917013 (2020).

    Article  Google Scholar 

  38. D. Ni, Z. Lin, P. **aoling, W. **nqing, and G. Hongliang, Preparation and characterization of Nickel-Zinc Ferrites by a solvothermal method. Rare Metal Mater. Eng. 44, 2126–2131 (2015).

    Article  Google Scholar 

  39. Z. Li, K. Gao, G. Han, R. Wang, H. Li, X. Zhao, and P. Guo, Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties. New J. Chem. 39, 361–368 (2015).

    Article  CAS  Google Scholar 

  40. Y. Yin, W. Liu, N. Huo, and S. Yang, Synthesis of vesicle-like MgFe2O4/Graphene 3D network anode material with enhanced lithium storage performance. ACS Sustain. Chem. Eng. 5, 563–570 (2017).

    Article  CAS  Google Scholar 

  41. Y. Tang, X. Wang, Q. Zhang, Y. Li, and H. Wang, Solvothermal synthesis of Co1−xNixFe2O4 nanoparticles and its application in ammonia vapors detection. Progr. Nat. Sci. Mater. Int. 22, 53–58 (2012).

    Article  Google Scholar 

  42. G. Allaedini, S.M. Tasirin, and P. Aminayi, Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Int. Nano Lett. 5, 183–186 (2015).

    Article  CAS  Google Scholar 

  43. S. Yáñez-Vilar, M. Sánchez-Andújar, C. Gómez-Aguirre, J. Mira, M.A. Señarís-Rodríguez, and S. Castro-García, A simple solvothermal synthesis of MFe2O4 (M=Mn, Co and Ni) nanoparticles. J. Solid State Chem. 182, 2685–2690 (2009).

    Article  Google Scholar 

  44. M. Su, C. He, and K. Shih, Facile synthesis of morphology and size-controlled α-Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process: the roles of reaction medium and urea dose. Ceram. Int. 42, 14793–14804 (2016).

    Article  CAS  Google Scholar 

  45. J. Ma, B. Chen, B. Chen, and S. Zhang, Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method. Adv. Nano Res. 5, 171–178 (2017).

    Google Scholar 

  46. T. Yao, Y. Qi, Y. Mei, Y. Yang, R. Aleisa, X. Tong, and J. Wu, One-step preparation of reduced graphene oxide aerogel loaded with mesoporous copper ferrite nanocubes: a highly efficient catalyst in microwave-assisted Fenton reaction. J. Hazard. Mater. 378, 120712 (2019).

    Article  CAS  Google Scholar 

  47. M.A. Aswad, F.A.H. Mutlak, M.S. Jabir, S.K. Abdulridha, A.F. Ahmed, and U.M. Nayef, Laser assisted hydrothermal synthesis of magnetic ferrite nanoparticles for biomedical applications. J. Phys: Conf. Ser. 1795, 012030 (2021).

    CAS  Google Scholar 

  48. B.J. Palla, D. Shah, P.E. Garcia Casillas, and J.A. Matutes-Aquino, Preparation of nanoparticles of barium ferrite from precipitation in micro-emulsions. J. Nanopart. Res. 1, 215–221 (1999).

    Article  CAS  Google Scholar 

  49. Z. Gilani, M. Anjum, M.S. Shifa, H. Ul, H. Asghar, J. Rehman, M. Usmani, S. Aslam, A. Khan, and M. Warsi, Morphological and magnetic behavior of neodymium doped LiNi05Fe2O4 nanocrystalline ferrites prepared via micro-emulsion technique. Digest J. Nanomater. Biostruct. 12, 223–228 (2017).

    Google Scholar 

  50. K. Pemartin, C. Solans, J. Alvarez-Quintana, and M. Sanchez-Dominguez, Synthesis of Mn–Zn ferrite nanoparticles by the oil-in-water micro-emulsion reaction method. Colloids Surf., A 451, 161–171 (2014).

    Article  CAS  Google Scholar 

  51. R. Ali, M.A. Khan, A. Mahmood, A.H. Chughtai, A. Sultan, M. Shahid, M. Ishaq, and M.F. Warsi, Structural, magnetic and dielectric behavior of Mg1−xCaxNiyFe2−yO4 nano-ferrites synthesized by the micro-emulsion method. Ceram. Int. 40, 3841–3846 (2014).

    Article  CAS  Google Scholar 

  52. R. Ali, M. Azhar Khan, A. Manzoor, M. Shahid, and M. Farooq Warsi, Structural and electromagnetic characterization of Co-Mn doped Ni-Sn ferrites fabricated via micro-emulsion route. J. Magn. Magn. Mater. 441, 578–584 (2017).

    Article  CAS  Google Scholar 

  53. R. Ali, A. Mahmood, M.A. Khan, A.H. Chughtai, M. Shahid, I. Shakir, and M.F. Warsi, Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method. J. Alloy. Compd. 584, 363–368 (2014).

    Article  CAS  Google Scholar 

  54. M.A. Yousuf, S. Jabeen, M.N. Shahi, M.A. Khan, I. Shakir, and M.F. Warsi, Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Res. Phys. 16, 102973 (2020).

    Google Scholar 

  55. M.A. Yousuf, M.M. Baig, M. Waseem, S. Haider, I. Shakir, S. Ud-Din Khan, and M.F. Warsi, Low cost micro-emulsion route synthesis of Cr-substituted MnFe2O4 nanoparticles. Ceram. Int. 45, 22316–22323 (2019).

    Article  CAS  Google Scholar 

  56. K. Ganure, L. Dhale, V. Tukaram, and K. Lohar, Synthesis and characterization of Lanthanum-doped Ni-Co-Zn spinel ferrites nanoparticles via normal micro-emulsion method. Int. J. Nanotechnol. Appl. 11, 189–195 (2017).

    Google Scholar 

  57. S. Sagadevan, Z.Z. Chowdhury, and R.F. Rafique, Preparation and characterization of Nickel ferrite nanoparticles via co-precipitation method. Mater. Res. 21, e20160533 (2018).

    Article  CAS  Google Scholar 

  58. Y. Peng, C. **a, M. Cui, Z. Yao, and X. Yi, Effect of reaction condition on microstructure and properties of (NiCuZn)Fe2O4 nanoparticles synthesized via co-precipitation with ultrasonic irradiation. Ultrason. Sonochem. 71, 105369 (2021).

    Article  CAS  Google Scholar 

  59. K. Islam, M. Haque, A. Kumar, A. Hoq, F. Hyder, and S.M. Hoque, Manganese ferrite nanoparticles (MnFe2O4): Size dependence for hyperthermia and negative/positive contrast enhancement in MRI. Nanomaterials 10, 2297 (2020).

    Article  CAS  Google Scholar 

  60. M.S.A. Darwish, H. Kim, H. Lee, C. Ryu, J.Y. Lee, and J. Yoon, Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method. Nanomaterials 9, 1176 (2019).

    Article  CAS  Google Scholar 

  61. H. El Moussaoui, T. Mahfoud, S. Habouti, K. El Maalam, M. Ben Ali, M. Hamedoun, O. Mounkachi, R. Masrour, E.K. Hlil, and A. Benyoussef, Synthesis and magnetic properties of tin spinel ferrites doped manganese. J. Magn. Magn. Mater. 405, 181–186 (2016).

    Article  Google Scholar 

  62. R.T. Olsson, G. Salazar-Alvarez, M.S. Hedenqvist, U.W. Gedde, F. Lindberg, and S.J. Savage, Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles. Chem. Mater. 17, 5109–5118 (2005).

    Article  CAS  Google Scholar 

  63. C. Pereira, A.M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernández-García, A. Guedes, P.B. Tavares, J.-M. Grenèche, J.P. Araújo, and C. Freire, Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: Tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem. Mater. 24, 1496–1504 (2012).

    Article  CAS  Google Scholar 

  64. A. Tadjarodi, M. Imani, and M. Salehi, ZnFe2O4 nanoparticles and a clay encapsulated ZnFe2O4 nanocomposite: synthesis strategy, structural characteristics and the adsorption of dye pollutants in water. RSC Adv. 5, 56145–56156 (2015).

    Article  CAS  Google Scholar 

  65. S.K. Jesudoss, J.J. Vijaya, L.J. Kennedy, P.I. Rajan, H.A. Al-Lohedan, R.J. Ramalingam, K. Kaviyarasu, and M. Bououdina, Studies on the efficient dual performance of Mn1–xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity. J. Photochem. Photobiol. B 165, 121–132 (2016).

    Article  CAS  Google Scholar 

  66. M. Venkatesh, G.S. Kumar, S. Viji, S. Karthi, and E.K. Girija, Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets. Modern Electron. Mater. 2, 74–78 (2016).

    Article  Google Scholar 

  67. Kozakova, Z.; Kuřitka, I.; Bazant, P.; Machovsky, M.; Pastorek, M.; Babayan, V.; Ltd, T, Simple and effective preparation of cobalt ferrite nanoparticles by microwave-assisted solvothermal method. In: Nanocon 2012, 4th international conference, Brno, Czech Republic, EU, 01/01; Brno, Czech Republic, EU, 2012; pp 763-766

  68. M. Giridhar, H.S.B. Naik, C.N. Sudhamani, M.C. Prabakara, R. Kenchappa, N. Venugopal, and S. Patil, Microwave-assisted synthesis of water-soluble styrylpyridine dye-capped zinc oxide nanoparticles for antibacterial applications. J. Chin. Chem. Soc. 67, 316–323 (2020).

    Article  CAS  Google Scholar 

  69. S.-H. Yu, Q.-L. Wang, Y. Chen, Y. Wang, and J.-H. Wang, Microwave-assisted synthesis of spinel ferrite nanospherolites. Mater. Lett. 278, 128431 (2020).

    Article  CAS  Google Scholar 

  70. S. Shirsath, D. Wang, S. Jadhav, M. Mane, and S. Li, Ferrites obtained by sol-gel method, Handbook of Sol-Gel Science and Technology. ed. L. Klein, M. Aparicio, and A. Jitianu (Cham: Springer, 2018), pp. 695–735.

    Chapter  Google Scholar 

  71. L. Zhang, and Y. Wu, Sol-gel synthesized magnetic MnFe2O4 spinel ferrite nanoparticles as novel catalyst for oxidative degradation of methyl orange. J. Nanomater. 2013, 640940 (2013).

    Article  Google Scholar 

  72. A. Gatelytė, D. Jasaitis, A. Beganskienė, and A. Kareiva, Sol-gel synthesis and characterization of selected transition metal nano-ferrites. Mater. Sci. (2011). https://doi.org/10.5755/j01.ms.17.3.598.

    Article  Google Scholar 

  73. S.A. Rashdan, and L.J. Hazeem, Synthesis of spinel ferrites nanoparticles and investigating their effect on the growth of microalgae Picochlorum sp. Arab. J. Basic Appl. Sci. 27, 134–141 (2020).

    Article  Google Scholar 

  74. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev, and M. Hajdúchová, Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids 107, 150–161 (2017).

    Article  CAS  Google Scholar 

  75. R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, and M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Solids 110, 87–99 (2017).

    Article  CAS  Google Scholar 

  76. K. Jalaiah, and K. Vijaya Babu, Structural, magnetic and electrical properties of nickel doped Mn-Zn spinel ferrite synthesized by sol-gel method. J. Magn. Magn. Mater. 423, 275–280 (2017).

    Article  CAS  Google Scholar 

  77. R.S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Zmrzlý, L. Kalina, M. Hajdúchová, and V. Enev, Magnetic properties of Co1−xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015).

    Article  CAS  Google Scholar 

  78. D.H. Bobade, S.M. Rathod, and M.L. Mane, Sol–gel auto-combustion synthesis, structural and enhanced magnetic properties of Ni2+ substituted nanocrystalline Mg–Zn spinel ferrite. Physica B 407, 3700–3704 (2012).

    Article  CAS  Google Scholar 

  79. K.M. Muniba, A.D. Chandio, M.S. Akhtar, J.K. Khan, G. Mustafa, N.U. Channa, Z.A. Gilani, and H.M. Asghar, Aluminum substitution in Ni-Co based spinel ferrite nanoparticles by sol–gel auto-combustion method. J. Electron. Mater. 50, 3302–3311 (2021).

    Article  CAS  Google Scholar 

  80. S. Jauhar, J. Kaur, A. Goyal, and S. Singhal, Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. 6, 97694–97719 (2016).

    Article  CAS  Google Scholar 

  81. M. Gu, B. Yue, R. Bao, and H. He, Template synthesis of magnetic one-dimensional nanostructured spinel MFe2O4 (M=Ni, Mg, Co). Mater. Res. Bull. 44, 1422–1427 (2009).

    Article  CAS  Google Scholar 

  82. M. Sultan, and R. Singh, Magnetic and optical properties of rf-sputtered zinc ferrite thin films. J. Appl. Phys. 105, 07A512 (2009).

    Article  Google Scholar 

  83. Y.-C. Liang, and H.-Y. Hsia, Growth and crystallographic feature-dependent characterization of spinel zinc ferrite thin films by RF sputtering. Nanoscale Res. Lett. 8, 537 (2013).

    Article  Google Scholar 

  84. S. Nakashima, K. Fujita, K. Tanaka, and K. Hirao, High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film. J. Phys.: Condens. Matter 17, 137–149 (2004).

    Google Scholar 

  85. M. Bohra, S. Prasad, N. Kumar, D.S. Misra, S.C. Sahoo, N. Venkataramani, and R. Krishnan, Large room temperature magnetization in nanocrystalline zinc ferrite thin films. Appl. Phys. Lett. 88, 262506 (2006).

    Article  Google Scholar 

  86. T. Niizeki, T. Kikkawa, K.-I. Uchida, M. Oka, K.Z. Suzuki, H. Yanagihara, E. Kita, and E. Saitoh, Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films. AIP Adv. 5, 053603 (2015).

    Article  Google Scholar 

  87. H. Yanagihara, Y. Utsumi, T. Niizeki, J. Inoue, and E. Kita, Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films. J. Appl. Phys. 115, 17A719 (2014).

    Article  Google Scholar 

  88. T. Niizeki, Y. Utsumi, R. Aoyama, H. Yanagihara, J.-I. Inoue, Y. Yamasaki, H. Nakao, K. Koike, and E. Kita, Extraordinarily large perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite CoxFe3−xO4 (001) (x = 0.75, 1.0) thin films. Appl. Phys. Lett. 103, 162407 (2013).

    Article  Google Scholar 

  89. M.A. Haija, A.I. Ayesh, S. Ahmed, and M.S. Katsiotis, Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film. Appl. Surf. Sci. 369, 443–447 (2016).

    Article  CAS  Google Scholar 

  90. M. Desai, S. Prasad, N. Venkataramani, I. Samajdar, A.K. Nigam, and R. Krishnan, Cubic phase stabilization in sputter-deposited nanocrystalline copper ferrite thin films with large magnetization. IEEE Trans. Magn. 38, 3012–3014 (2002).

    Article  CAS  Google Scholar 

  91. Š Višňovský, M. Veis, E. Lišková, V. Kolinský, P.D. Kulkarni, N. Venkataramani, P. Shiva, and R. Krishnan, MOKE spectroscopy of sputter-deposited Cu-ferrite films. J. Magn. Magn. Mater. 290–291, 195–197 (2005).

    Article  Google Scholar 

  92. S. Nakagawa, S. Saito, T. Kamiki, and S.-H. Kong, Mn–Zn spinel ferrite thin films prepared by high rate reactive facing targets sputtering. J. Appl. Phys. 93, 7996–7998 (2003).

    Article  CAS  Google Scholar 

  93. L. Wang, J. Bai, Z. Li, J. Cao, F. Wei, and Z. Yang, The influence of substrate on the magnetic properties of MnZn ferrite thin film fabricated by alternate sputtering. Phys. Status Solidi (A) 205, 2453–2457 (2008).

    Article  CAS  Google Scholar 

  94. L. Jang-Sik, L. Byung-Il, and J. Seung-Ki, Effects of process parameters on structure and magnetic properties of sputtered Ni-Zn ferrite thin films. IEEE Trans. Magn. 35, 3415–3417 (1999).

    Article  Google Scholar 

  95. M.R. Koblischka, M. Kirsch, M. Brust, A. Koblischka-Veneva, and U. Hartmann, Preparation of thin ferrite films on silicon using RF sputtering. Phys. Status Solidi (A) 205, 1783–1786 (2008).

    Article  CAS  Google Scholar 

  96. M. Desai, S. Prasad, N. Venkataramani, I. Samajdar, A.K. Nigam, N. Keller, R. Krishnan, E.M. Baggio-Saitovitch, B.R. Pujada, and A. Rossi, Anomalous variation of coercivity with annealing in nanocrystalline NiZn ferrite films. J. Appl. Phys. 91, 7592–7594 (2002).

    Article  CAS  Google Scholar 

  97. D. Guo, Z. Zhang, M. Lin, X. Fan, G. Chai, Y. Xu, and D. Xue, Ni–Zn ferrite films with high resonance frequency in the gigahertz range deposited by magnetron sputtering at room temperature. J. Phys. D Appl. Phys. 42, 125006 (2009).

    Article  Google Scholar 

  98. D. Guo, X. Fan, G. Chai, C. Jiang, X. Li, and D. Xue, Structural and magnetic properties of NiZn ferrite films with high saturation magnetization deposited by magnetron sputtering. Appl. Surf. Sci. 256, 2319–2322 (2010).

    Article  CAS  Google Scholar 

  99. L. Wu, C. Dong, X. Wang, J. Li, and M. Li, Annealing effect on the bipolar resistive switching memory of NiZn ferrite films. J. Alloy. Compd. 779, 794–799 (2019).

    Article  CAS  Google Scholar 

  100. M. Sultan, and R. Singh, Crystal structure and magnetic properties of rf-sputtered Cu–Zn ferrite thin films. J. Appl. Phys. 107, 09A510 (2010).

    Article  Google Scholar 

  101. S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, T. Yamamoto, and I. Tanaka, First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution. Phys. Rev. B 75, 174443 (2007).

    Article  Google Scholar 

  102. C. Klewe, M. Meinert, A. Boehnke, K. Kuepper, E. Arenholz, A. Gupta, J.-M. Schmalhorst, T. Kuschel, and G. Reiss, Physical characteristics and cation distribution of NiFe2O4 thin films with high resistivity prepared by reactive co-sputtering. J. Appl. Phys. 115, 123903 (2014).

    Article  Google Scholar 

  103. J. Lumetzberger, M. Buchner, S. Pile, V. Ney, W. Gaderbauer, N. Daffé, M.V. Moro, D. Primetzhofer, K. Lenz, and A. Ney, Influence of structure and cation distribution on magnetic anisotropy and dam** in Zn/Al doped nickel ferrites. Phys. Rev. B 102, 054402 (2020).

    Article  CAS  Google Scholar 

  104. R. Ade, Y.S. Chen, and J.G. Lin, Effect of atomic replacement on the magnetic anisotropy in epitaxially grown ferrite thin films. J. Magn. Magn. Mater. 496, 165956 (2020).

    Article  CAS  Google Scholar 

  105. K.S. Kim, P. Muralidharan, S.H. Han, J.S. Kim, H.G. Kim, and C.I. Cheon, Influence of oxygen partial pressure on the epitaxial MgFe2O4 thin films deposited on SrTiO3 (100) substrate. J. Alloy. Compd. 503, 460–463 (2010).

    Article  CAS  Google Scholar 

  106. R.K. Gupta, and F. Yakuphanoglu, Epitaxial growth of MgFe2O4 (111) thin films on sapphire (0001) substrate. Mater. Lett. 65, 3058–3060 (2011).

    Article  CAS  Google Scholar 

  107. S.M. Nikam, A. Sharma, M. Rahaman, A.M. Teli, S.H. Mujawar, D.R.T. Zahn, P.S. Patil, S.C. Sahoo, G. Salvan, and P.B. Patil, Pulsed laser deposited CoFe2O4 thin films as supercapacitor electrodes. RSC Adv. 10, 19353–19359 (2020).

    Article  CAS  Google Scholar 

  108. F. Eskandari, P. Kameli, and H. Salamati, Effect of laser pulse repetition rate on morphology and magnetic properties of cobalt ferrite films grown by pulsed laser deposition. Appl. Surf. Sci. 466, 215–223 (2019).

    Article  CAS  Google Scholar 

  109. M. Oujja, L. Martín-García, E. Rebollar, A. Quesada, M.A. García, J.F. Fernández, J.F. Marco, J. de la Figuera, and M. Castillejo, Effect of wavelength, deposition temperature and substrate type on cobalt ferrite thin films grown by pulsed laser deposition. Appl. Surf. Sci. 452, 19–31 (2018).

    Article  CAS  Google Scholar 

  110. G. Dascalu, G. Pompilian, B. Chazallon, O.F. Caltun, S. Gurlui, and C. Focsa, Femtosecond pulsed laser deposition of cobalt ferrite thin films. Appl. Surf. Sci. 278, 38–42 (2013).

    Article  CAS  Google Scholar 

  111. V. Zviagin, Y. Kumar, I. Lorite, P. Esquinazi, M. Grundmann, and R. Schmidt-Grund, Ellipsometric investigation of ZnFe2O4 thin films in relation to magnetic properties. Appl. Phys. Lett. 108, 131901 (2016).

    Article  Google Scholar 

  112. R.A. Henning, P. Uredat, C. Simon, A. Bloesser, P. Cop, M.T. Elm, and R. Marschall, Characterization of MFe2O4 (M = Mg, Zn) thin films prepared by pulsed laser deposition for photoelectrochemical applications. J. Phys. Chem. C 123, 18240–18247 (2019).

    Article  CAS  Google Scholar 

  113. K. Panwar, S. Tiwari, K. Bapna, N.L. Heda, R.J. Choudhary, D.M. Phase, and B.L. Ahuja, The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films. J. Magn. Magn. Mater. 421, 25–30 (2017).

    Article  CAS  Google Scholar 

  114. A.T. Raghavender, N. Hoa Hong, E. Chikoidze, Y. Dumont, and M. Kurisu, Effect of zinc do** on the structural and magnetic properties of nickel ferrite thin films fabricated by pulsed laser deposition technique. J. Magn. Magn. Mater. 378, 358–361 (2015).

    Article  CAS  Google Scholar 

  115. H. Etoh, J. Sato, Y. Murakami, A. Takahashi, and R. Nakatani, Magnetic properties of Mn-Zn ferrite thin films fabricated by pulsed laser deposition. J. Phys: Conf. Ser. 165, 012031 (2009).

    Google Scholar 

  116. Y.W. Qian, J.X. Deng, H. Zheng, P. Zheng, L. Zheng, and H.B. Qin, Influence of oxygen pressure on the properties of Ni-Mn-Zn ferrite films on silicon substrate. J. Electron. Mater. 43, 4289–4293 (2014).

    Article  CAS  Google Scholar 

  117. G. Dascalu, G. Pompilian, B. Chazallon, V. Nica, O.F. Caltun, S. Gurlui, and C. Focsa, Rare earth doped cobalt ferrite thin films deposited by PLD. Appl. Phys. A 110, 915–922 (2013).

    Article  CAS  Google Scholar 

  118. J.J. Wisser, L.J. Riddiford, A. Altman, P. Li, S. Emori, P. Shafer, C. Klewe, A.T. N’Diaye, E. Arenholz, and Y. Suzuki, The role of iron in magnetic dam** of Mg(Al, Fe)2O4 spinel ferrite thin films. Appl. Phys. Lett. 116, 142406 (2020).

    Article  CAS  Google Scholar 

  119. A. Yang, Z. Chen, X. Zuo, D. Arena, J. Kirkland, C. Vittoria, and V.G. Harris, Cation-disorder-enhanced magnetization in pulsed-laser-deposited CuFe2O4 films. Appl. Phys. Lett. 86, 252510 (2005).

    Article  Google Scholar 

  120. V. Zviagin, C. Sturm, P.D. Esquinazi, M. Grundmann, and R. Schmidt-Grund, Control of magnetic properties in spinel ZnFe2O4 thin films through intrinsic defect manipulation. J. Appl. Phys. 128, 165702 (2020).

    Article  CAS  Google Scholar 

  121. C.E. Rodríguez Torres, F. Golmar, M. Ziese, P. Esquinazi, and S.P. Heluani, Evidence of defect-induced ferromagnetism in ZnFe2O4 thin films. Phys. Rev. B 84, 064404 (2011).

    Article  Google Scholar 

  122. G.H. Jaffari, A.K. Rumaiz, J.C. Woicik, and S.I. Shah, Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111, 093906 (2012).

    Article  Google Scholar 

  123. D. Peeters, D.H. Taffa, M.M. Kerrigan, A. Ney, N. Jöns, D. Rogalla, S. Cwik, H.-W. Becker, M. Grafen, A. Ostendorf, C.H. Winter, S. Chakraborty, M. Wark, and A. Devi, Photoactive zinc ferrites fabricated via conventional CVD approach. ACS Sustain. Chem. Eng. 5, 2917–2926 (2017).

    Article  CAS  Google Scholar 

  124. N. Li, Y.-H.A. Wang, M.N. Iliev, T.M. Klein, and A. Gupta, Growth of atomically smooth epitaxial nickel ferrite films by direct liquid injection CVD. Chem. Vap. Depos. 17, 261–269 (2011).

    Article  CAS  Google Scholar 

  125. N. Li, S. Schäfer, R. Datta, T. Mewes, T.M. Klein, and A. Gupta, Microstructural and ferromagnetic resonance properties of epitaxial nickel ferrite films grown by chemical vapor deposition. Appl. Phys. Lett. 101, 132409 (2012).

    Article  Google Scholar 

  126. R. Datta, B. Loukya, N. Li, and A. Gupta, Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition. J. Cryst. Growth 345, 44–50 (2012).

    Article  CAS  Google Scholar 

  127. N. Li, M. Liu, Z. Zhou, N.X. Sun, D.V.B. Murthy, G. Srinivasan, T.M. Klein, V.M. Petrov, and A. Gupta, Electrostatic tuning of ferromagnetic resonance and magnetoelectric interactions in ferrite-piezoelectric heterostructures grown by chemical vapor deposition. Appl. Phys. Lett. 99, 192502 (2011).

    Article  Google Scholar 

  128. Y. Yang, Q. Tao, G. Srinivasan, and C.G. Takoudis, Cyclic chemical vapor deposition of nickel ferrite thin films using organometallic precursor combination. ECS J. Solid State Sci. Technol. 3, P345–P352 (2014).

    Article  CAS  Google Scholar 

  129. L. Shen, M. Althammer, N. Pachauri, B. Loukya, R. Datta, M. Iliev, N. Bao, and A. Gupta, Epitaxial growth of spinel cobalt ferrite films on MgAl2O4 substrates by direct liquid injection chemical vapor deposition. J. Cryst. Growth 390, 61–66 (2014).

    Article  CAS  Google Scholar 

  130. A.V. Telegin, I.D. Lobov, I.E. Korsakov, V.A. Bessonova, and Y.P. Sukhorukov, Magnetooptical properties of epitaxial strained ferrite films grown by MOCVD method. J. Phys: Conf. Ser. 1389, 012107 (2019).

    CAS  Google Scholar 

  131. P.A. Lane, P.J. Wright, M.J. Crosbie, A.D. Pitt, C.L. Reeves, B. Cockayne, A.C. Jones, and T.J. Leedham, Liquid injection metal organic chemical vapour deposition of nickel zinc ferrite thin films. J. Cryst. Growth 192, 423–429 (1998).

    Article  CAS  Google Scholar 

  132. H. Itoh, T. Uemura, H. Yamaguchi, and S. Naka, Chemical vapour deposition of epitaxial Ni-Zn ferrite films by thermal decomposition of acetylacetonato complexes. J. Mater. Sci. 24, 3549–3552 (1989).

    Article  CAS  Google Scholar 

  133. E. Fujii, H. Torii, R. Takayama, and T. Hirao, Preparation of Co Ferrite Films by Plasma-Enhanced Metalorganic Chemical Vapor Deposition. Japn. J. Appl. Phys. 34, 130–131 (1995).

    Article  CAS  Google Scholar 

  134. Y. Zhang, W. Ren, G. Niu, C. Li, C. Wang, Z.-D. Jiang, M. Liu, and Z.-G. Ye, Atomic layer deposition of void-free ZnFe2O4 thin films and their magnetic properties. Thin Solid Films 709, 138206 (2020).

    Article  CAS  Google Scholar 

  135. Y.T. Chong, E.M.Y. Yau, K. Nielsch, and J. Bachmann, Direct atomic layer deposition of ternary ferrites with various magnetic properties. Chem. Mater. 22, 6506–6508 (2010).

    Article  CAS  Google Scholar 

  136. M. Coll, J.M. Montero Moreno, J. Gazquez, K. Nielsch, X. Obradors, and T. Puig, Low temperature stabilization of nanoscale epitaxial spinel ferrite thin films by atomic layer deposition. Adv. Func. Mater. 24, 5368–5374 (2014).

    Article  CAS  Google Scholar 

  137. C.D. Pham, J. Chang, M.A. Zurbuchen, and J.P. Chang, Magnetic properties of CoFe2O4 thin films synthesized by radical-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces. 9, 36980–36988 (2017).

    Article  CAS  Google Scholar 

  138. S. Vangelista, A. Lamperti, C. Wiemer, M. Fanciulli, and R. Mantovan, Atomic layer deposition of hexagonal ErFeO3 thin films on SiO2/Si. Thin Solid Films 604, 18–22 (2016).

    Article  CAS  Google Scholar 

  139. Z. Wu, M. Okuya, and S. Kaneko, Spray pyrolysis deposition of zinc ferrite films from metal nitrates solutions. Thin Solid Films 385, 109–114 (2001).

    Article  CAS  Google Scholar 

  140. A. Sutka, J. Zavickis, G. Mezinskis, D. Jakovlevs, and J. Barloti, Ethanol monitoring by ZnFe2O4 thin film obtained by spray pyrolysis. Sens. Actuators B Chem. 176, 330–334 (2013).

    Article  CAS  Google Scholar 

  141. J. Sun, Z. Wang, Y. Wang, Y. Zhu, T. Shen, L. Pang, K. Wei, and F. Li, Synthesis of the nanocrystalline CoFe2O4 ferrite thin films by a novel sol–gel method using glucose as an additional agent. Mater. Sci. Eng., B 177, 269–273 (2012).

    Article  CAS  Google Scholar 

  142. M. Ninomiya, M. Sasaki, T. Tsurui, K. Shinozaki, T. Komatsu, and T. Ishibashi, Preparation and characterization of Co ferrite thin films on MgO (100) substrates by metal organic decomposition. Sens. Mater. 27, 925–931 (2015).

    CAS  Google Scholar 

  143. K. Chand Verma, V. Pratap Singh, M. Ram, J. Shah, and R.K. Kotnala, Structural, microstructural and magnetic properties of NiFe2O4, CoFe2O4 and MnFe2O4 nanoferrite thin films. J. Magn. Magn. Mater. 323, 3271–3275 (2011).

    Article  Google Scholar 

  144. M.K. Zate, V.V. Jadhav, S.K. Gore, J.H. Shendkar, S.U. Ekar, A. Al-Osta, M. Naushad, and R.S. Mane, Structural, morphological and electrochemical supercapacitive properties of sprayed manganese ferrite thin film electrode. J. Anal. Appl. Pyrol. 122, 224–229 (2016).

    Article  CAS  Google Scholar 

  145. H. Arabi, and N. Khalili Moghadam, Nanostructure and magnetic properties of magnesium ferrite thin films deposited on glass substrate by spray pyrolysis. J. Magn. Magn. Mater. 335, 144–148 (2013).

    Article  CAS  Google Scholar 

  146. Y. Yusuf, R.A.S. Azis, S. Kanagesan, and G. Bahmanrokh, Microstructure and magnetic properties of Ni-Zn ferrite thin film synthesized using sol-gel and spin-coating technique. J. Aus. Ceram. Soc. 53, 767–774 (2017).

    Article  CAS  Google Scholar 

  147. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, Y.M. Hunge, K.Y. Rajpure, and C.H. Bhosale, Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni–Zn ferrite thin films. Mater. Res. Bull. 67, 47–54 (2015).

    Article  CAS  Google Scholar 

  148. F. Tudorache, P.D. Popa, M. Dobromir, and F. Iacomi, Studies on the structure and gas sensing properties of nickel–cobalt ferrite thin films prepared by spin coating. Mater. Sci. Eng., B 178, 1334–1338 (2013).

    Article  CAS  Google Scholar 

  149. A.A. Bagade, and K.Y. Rajpure, Studies on NO2 gas sensing properties of sprayed Co1−xMnxFe2O4 (0≤x≤0.5) spinel ferrite thin films. Ceram. Int. 41, 7394–7401 (2015).

    Article  CAS  Google Scholar 

  150. A.R. Chavan, J.S. Kounsalye, R.R. Chilwar, S.B. Kale, and K.M. Jadhav, Cu2+ substituted NiFe2O4 thin films via spray pyrolysis technique and their high-frequency devices application. J. Alloy. Compd. 769, 1132–1145 (2018).

    Article  CAS  Google Scholar 

  151. H.J. Kardile, S.B. Somvanshi, A.R. Chavan, A.A. Pandit, and K.M. Jadhav, Effect of Cd2+ do** on structural, morphological, optical, magnetic and wettability properties of nickel ferrite thin films. Optik 207, 164462 (2020).

    Article  CAS  Google Scholar 

  152. L. Avazpour, M.R. Toroghinejad, and H. Shokrollahi, Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method. Appl. Surf. Sci. 387, 869–874 (2016).

    Article  CAS  Google Scholar 

  153. V.G. Harris, N.C. Koon, C.M. Williams, Q. Zhang, M. Abe, and J.P. Kirkland, Cation distribution in NiZn-ferrite films via extended x-ray absorption fine structure. Appl. Phys. Lett. 68, 2082–2084 (1996).

    Article  CAS  Google Scholar 

  154. H. Yao, X. Ning, H. Zhao, A. Hao, and M. Ismail, Effect of Gd-do** on structural, optical, and magnetic properties of NiFe2O4 As-prepared thin films via facile sol-gel approach. ACS Omega 6, 6305–6311 (2021).

    Article  CAS  Google Scholar 

  155. R. Galindo, E. Mazario, S. Gutiérrez, M.P. Morales, and P. Herrasti, Electrochemical synthesis of NiFe2O4 nanoparticles: characterization and their catalytic applications. J. Alloy. Compd. 536, S241–S244 (2012).

    Article  CAS  Google Scholar 

  156. S. Maensiri, M. Sangmanee, and A. Wiengmoon, Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett. 4, 221 (2008).

    Article  Google Scholar 

  157. G. van der Laan, and A.I. Figueroa, X-ray magnetic circular dichroism—a versatile tool to study magnetism. Coord. Chem. Rev. 277–278, 95–129 (2014).

    Article  Google Scholar 

  158. W. Baaziz, B.P. Pichon, Y. Liu, J.-M. Grenèche, C. Ulhaq-Bouillet, E. Terrier, N. Bergeard, V. Halté, C. Boeglin, F. Choueikani, M. Toumi, T. Mhiri, and S. Begin-Colin, Tuning of synthesis conditions by thermal decomposition toward core–shell CoxFe1–xO@CoyFe3–yO4 and CoFe2O4 nanoparticles with spherical and cubic shapes. Chem. Mater. 26, 5063–5073 (2014).

    Article  CAS  Google Scholar 

  159. S. Nappini, E. Magnano, F. Bondino, I. Píš, A. Barla, E. Fantechi, F. Pineider, C. Sangregorio, L. Vaccari, L. Venturelli, and P. Baglioni, Surface charge and coating of CoFe2O4 nanoparticles: evidence of preserved magnetic and electronic properties. J. Phys. Chem. C 119, 25529–25541 (2015).

    Article  CAS  Google Scholar 

  160. J.M. Byrne, V.S. Coker, E. Cespedes, P.L. Wincott, D.J. Vaughan, R.A.D. Pattrick, G. van der Laan, E. Arenholz, F. Tuna, M. Bencsik, J.R. Lloyd, and N.D. Telling, Biosynthesis of Zinc substituted magnetite nanoparticles with enhanced magnetic properties. Adv. Func. Mater. 24, 2518–2529 (2014).

    Article  CAS  Google Scholar 

  161. J.P. Singh, B. Kaur, A. Sharma, S.H. Kim, S. Gautam, R.C. Srivastava, N. Goyal, W.C. Lim, H.J. Lin, J.M. Chen, K. Asokan, D. Kanjilal, S.O. Won, I.-J. Lee, and K.H. Chae, Mechanistic insights into the interaction between energetic oxygen ions and nanosized ZnFe2O4: XAS-XMCD investigations. Phys. Chem. Chem. Phys. 20, 12084–12096 (2018).

    Article  CAS  Google Scholar 

  162. J.F. Hochepied, P. Sainctavit, and M.P. Pileni, X-ray absorption spectra and X-ray magnetic circular dichroism studies at Fe and Co L2,3 edges of mixed cobalt–zinc ferrite nanoparticles: cationic repartition, magnetic structure and hysteresis cycles. J. Magn. Magn. Mater. 231, 315–322 (2001).

    Article  CAS  Google Scholar 

  163. N. Daffé, F. Choueikani, S. Neveu, M.-A. Arrio, A. Juhin, P. Ohresser, V. Dupuis, and P. Sainctavit, Magnetic anisotropies and cationic distribution in CoFe2O4 nanoparticles prepared by co-precipitation route: Influence of particle size and stoichiometry. J. Magn. Magn. Mater. 460, 243–252 (2018).

    Article  Google Scholar 

  164. M.Y. Yang, S. Seong, E. Lee, M. Ghanathe, A. Kumar, S.M. Yusuf, Y. Kim, and J.-S. Kang, Electronic structures and magnetization reversal in Li0.5FeCr1.5O4. Appl. Phys. Lett. 116, 252401 (2020).

    Article  CAS  Google Scholar 

  165. K. Ugendar, V. Hari Babu, V. Raghavendra Reddy, and G. Markaneyulu, Cationic ordering and magnetic properties of rare-earth doped NiFe2O4 probed by Mössbauer and x-ray spectroscopies. J. Magn. Magn. Mater. 484, 291–297 (2019).

    Article  CAS  Google Scholar 

  166. P. Mendoza Zélis, G.A. Pasquevich, K.L. Salcedo Rodríguez, F.H. Sánchez, and C.E. Rodríguez Torres, Surface magnetic contribution in zinc ferrite thin films studied by element- and site-specific XMCD hysteresis-loops. J. Magn. Magn. Mater. 419, 98–104 (2016).

    Article  Google Scholar 

  167. S. Matzen, J.B. Moussy, R. Mattana, K. Bouzehouane, C. Deranlot, F. Petroff, J.C. Cezar, M.A. Arrio, P. Sainctavit, C. Gatel, B. Warot-Fonrose, and Y. Zheng, Epitaxial growth and ferrimagnetic behavior of MnFe2O4(111) ultrathin layers for room-temperature spin filtering. Phys. Rev. B 83, 184402 (2011).

    Article  Google Scholar 

  168. K.L. Salcedo Rodríguez, G. Bridoux, S.P. Heluani, G.A. Pasquevich, P.D. Esquinazi, and C.E. Rodríguez Torres, Influence of substrate effects in magnetic and transport properties of magnesium ferrite thin films. J. Magn. Magn. Mater. 469, 643–649 (2019).

    Article  Google Scholar 

  169. S. Emori, D. Yi, S. Crossley, J.J. Wisser, P.P. Balakrishnan, B. Khodadadi, P. Shafer, C. Klewe, A.T. N’Diaye, B.T. Urwin, K. Mahalingam, B.M. Howe, H.Y. Hwang, E. Arenholz, and Y. Suzuki, Ultralow dam** in nanometer-thick epitaxial spinel ferrite thin films. Nano Lett. 18, 4273–4278 (2018).

    Article  CAS  Google Scholar 

  170. S. Emori, B.A. Gray, H.-M. Jeon, J. Peoples, M. Schmitt, K. Mahalingam, M. Hill, M.E. McConney, M.T. Gray, U.S. Alaan, A.C. Bornstein, P. Shafer, A.T. N’Diaye, E. Arenholz, G. Haugstad, K.-Y. Meng, F. Yang, D. Li, S. Mahat, D.G. Cahill, P. Dhagat, A. Jander, N.X. Sun, Y. Suzuki, and B.M. Howe, Coexistence of low dam** and strong magnetoelastic coupling in epitaxial spinel ferrite thin films. Adv. Mater. 29, 1701130 (2017).

    Article  Google Scholar 

  171. J. Thien, J. Bahlmann, A. Alexander, K. Ruwisch, J. Rodewald, T. Pohlmann, M. Hoppe, F. Alarslan, M. Steinhart, B. Altuncevahir, P. Shafer, C. Meyer, F. Bertram, J. Wollschläger, and K. Küpper, Cationic ordering and its influence on the magnetic properties of Co-rich cobalt ferrite thin films prepared by reactive solid phase epitaxy on Nb-doped SrTiO3(001). Materials 15, 46 (2022).

    Article  CAS  Google Scholar 

  172. Murad, E., Chapter 2.1 - Mössbauer Spectroscopy. In Developments in Clay Science, Bergaya, F.; Lagaly, G., Eds. Elsevier: 2013; Vol. 5, pp 11–24.

  173. G.A. Sawatzky, F. Van Der Woude, and A.H. Morrish, Recoilless-fraction ratios for Fe57 in octahedral and tetrahedral sites of a spinel and a garnet. Phys. Rev. 183, 383–386 (1969).

    Article  CAS  Google Scholar 

  174. V.K. Mittal, P. Chandramohan, S. Bera, M.P. Srinivasan, S. Velmurugan, and S.V. Narasimhan, Cation distribution in NixMg1−xFe2O4 studied by XPS and Mössbauer spectroscopy. Solid State Commun. 137, 6–10 (2006).

    Article  CAS  Google Scholar 

  175. D. Carta, M.F. Casula, G. Mountjoy, and A. Corrias, Formation and cation distribution in supported manganese ferrite nanoparticles: an x-ray absorption study. Phys. Chem. Chem. Phys. 10, 3108–3117 (2008).

    Article  CAS  Google Scholar 

  176. D. Carta, D. Loche, G. Mountjoy, G. Navarra, and A. Corrias, NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: an x-ray absorption study. J. Phys. Chem. C 112, 15623–15630 (2008).

    Article  CAS  Google Scholar 

  177. T.A.S. Ferreira, J.C. Waerenborgh, M.H.R.M. Mendonça, M.R. Nunes, and F.M. Costa, Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. Solid State Sci. 5, 383–392 (2003).

    Article  CAS  Google Scholar 

  178. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, and I. Nakatani, Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B 63, 184108 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhajit Nandy or Mamta Latwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, S., Latwal, M., Pandey, G. et al. Synthesis of Nanostructured Ferrites and Cation Distribution Studies by X-ray Magnetic Circular Dichroism, Mössbauer Spectroscopy, and X-ray Absorption Spectroscopy. J. Electron. Mater. 51, 6663–6688 (2022). https://doi.org/10.1007/s11664-022-09951-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09951-7

Keywords

Navigation