Log in

Rare earth doped cobalt ferrite thin films deposited by PLD

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CoFe2O4 thin films with preferential texture structure, small grain size, and perpendicular magnetic anisotropy can be obtained by the pulsed laser deposition (PLD) technique. In this work, we studied the influence of the Fe3+ ions substitution by three elements from lanthanide group (Dy, La, and Gd) on the structural properties of the thin films. The samples were deposited by Nd:YAG laser (λ=532 nm, 10 ns) ablation of CoFe1.8RE0.2O4, (RE=Dy, La, Gd) targets at various substrate temperatures ranging from room temperature to 600 °C. The microstructure and chemical composition of the thin films were investigated by Raman spectroscopy, XRD, SEM-EDS, and ToF-SIMS. The XRD patterns and Raman spectra of the thin films indicated the formation of a single spinel structure. Thus, the desired substitution of the iron ions in the spinel lattice with the RE elements was achieved in the thin films, although in the bulk material, their presence determined the formation of a residual phase with a perovskite-type structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Barbosa, B.G. Almeida, J.A. Mendes, A.G. Rolo, J.P. Araújo, J.B. Sousa, J. Appl. Phys. 101, 09M101 (2007)

    Article  Google Scholar 

  2. W. Chen, W. Zhu, J. Am. Ceram. Soc. 94, 1096 (2010)

    Article  Google Scholar 

  3. A. Goldman, Modern Ferrite Technology (Springer, Berlin, 2006)

    Google Scholar 

  4. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, J. Appl. Phys. 110, 053910 (2011)

    Article  ADS  Google Scholar 

  5. F. Cheng, C. Liao, J. Kuang, Z. Xu, C. Yan, L. Chen, H. Zhao, Z. Liu, J. Appl. Phys. 85, 2782 (1999)

    Article  ADS  Google Scholar 

  6. M.L. Kahn, Z.J. Zhang, Appl. Phys. Lett. 78, 3651 (2001)

    Article  ADS  Google Scholar 

  7. S.J. Kim, K.H. Jeong, C.S. Kim, IEEE Trans. Magn. 38, 2628 (2002)

    Article  ADS  Google Scholar 

  8. J.H. Yin, B.H. Liu, J. Ding, Y.C. Wang, Bull. Mater. Sci. 29, 573 (2006)

    Article  Google Scholar 

  9. F. Zhang, S. Kantake, Y. Kitamoto, M. Abe, IEEE Trans. Magn. 35, 2751 (1999)

    Article  ADS  Google Scholar 

  10. S.A. Chambers, R.F.C. Farrow, S. Maat, M.F. Toney, L. Folks, J.G. Catalano, T.P. Trainor, G.E. Brown Jr., J. Magn. Magn. Mater. 246, 124 (2002)

    Article  ADS  Google Scholar 

  11. O.F. Caltun, J. Optoelectron. Adv. Mater. 7, 739 (2005)

    Google Scholar 

  12. R.N. Panda, J.C. Shih, T.S. Chin, J. Magn. Magn. Mater. 257, 79 (2003)

    Article  ADS  Google Scholar 

  13. L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Mater. Lett. 60, 1 (2006)

    Article  Google Scholar 

  14. M. Feder, L. Diamandescu, I. Bibicu, O.F. Caltun, I. Dumitru, L. Boutiuc, H. Chiriac, N. Lupu, V. Vilceanu, M. Vilceanu, IEEE Trans. Magn. 44, 2936 (2008)

    Article  ADS  Google Scholar 

  15. C. Ursu, O.G. Pompilian, S. Gurlui, P. Nica, M. Agop, M. Dudeck, C. Focsa, Appl. Phys. A 101, 153 (2010)

    Article  ADS  Google Scholar 

  16. C. Ursu, S. Gurlui, C. Focsa, G. Popa, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 267, 446 (2009)

    Article  ADS  Google Scholar 

  17. T. Yu, Z.X. Shen, Y. Shi, J. Ding, J. Phys. Condens. Matter 14, L613 (2002)

    Article  ADS  Google Scholar 

  18. S.W. da Silva, T.F.O. Melo, M.A.G. Soler, E.C.D. Lima, M.F. da Silva, P.C. Morais, IEEE Trans. Magn. 39, 2645 (2003)

    Article  ADS  Google Scholar 

  19. A. Wu, G. Cheng, H. Shen, J. Xu, Y. Chu, Z. Ge, Asia-Pac. J. Chem. Eng. 4, 518 (2009)

    Article  Google Scholar 

  20. Y. Wang, J. Zhu, L. Zhang, X. Yang, L. Lu, X. Wang, Mater. Lett. 60, 1767 (2006)

    Article  Google Scholar 

  21. M. Popa, J. Frantti, M. Kakihana, Solid State Ion. 154–155, 437 (2002)

    Article  Google Scholar 

  22. A. Raghunathan, I.C. Nlebedim, D.C. Jiles, J.E. Snyder, J. Appl. Phys. 107, 09A516 (2010)

    Article  Google Scholar 

  23. J.H. Yin, J. Ding, J.S. Chen, X.S. Miao, J. Magn. Magn. Mater. 303, e387 (2006)

    Article  ADS  Google Scholar 

  24. F.X. Cheng, J.T. Jia, C.S. Liao, Z.G. Xu, B. Zhou, C.H. Yan, L.Y. Chen, H.B. Zhao, J. Appl. Phys. 87, 6779 (2000)

    Article  ADS  Google Scholar 

  25. F.X. Cheng, J.T. Jia, C.S. Liao, Z.G. Xu, B. Zhou, C.H. Yan, L.Y. Chen, H.B. Zhao, J. Appl. Phys. 86, 2727 (1999)

    Article  ADS  Google Scholar 

  26. H. Parmar, R. Desai, R.V. Upadhyay, Appl. Phys. A, Mater. Sci. Process. 104, 229 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Social Fund in Romania, under the responsibility of the Managing Authority for the Sectoral Operational Programme for Human Resources Development 2007–2013 (Grants POSDRU/88/1.5/S/47646 and POSDRU/89/1.5/S/49944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Focsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dascalu, G., Pompilian, G., Chazallon, B. et al. Rare earth doped cobalt ferrite thin films deposited by PLD. Appl. Phys. A 110, 915–922 (2013). https://doi.org/10.1007/s00339-012-7196-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7196-8

Keywords

Navigation