Log in

Elucidation of Solidification Behavior of Ti–6Al–4V under Convection and a Temperature Gradient Using Levitation Methods

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To understand the effects of convection and a temperature gradient on solidification behavior, Ti–6Al–4V alloy samples were melted and solidified using three levitation methods: electrostatic levitation (ESL), electromagnetic levitation (EML) with severe convection, and aerodynamic levitation (ADL) with a large temperature gradient. Titanium carbide (TiC) particles were added to Ti–6Al–4V as heterogeneous nucleation site particles to make differences in microstructures obvious. The cross sections of the levitated samples were analyzed using electron backscatter diffraction (EBSD) to obtain prior-β grain maps. The grains in the ESL sample were relatively isotropic in shape, whereas the grains and dendrite structures of the EML sample were radially arranged throughout the cross section. Therefore, under significant convection, such as in the EML sample, as grain growth is suppressed downstream, grain growth in the direction perpendicular to the melt flow is accelerated. In the ADL sample with a large temperature gradient in a vertical direction, columnar and equiaxed grains were formed in the lower and upper parts of the sample, respectively. Therefore, during unidirectional solidification due to a large temperature gradient, the shape of the grains changes from columnar to equiaxed as constitutional undercooling increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Založnik and B. Šarler: Mater. Sci. Eng. A, 2005, vol. 413–14, pp. 85–91.

    Article  Google Scholar 

  2. D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. Stjohn, M. Qian, and M.A. Easton: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4341–59.

    Article  Google Scholar 

  3. C. Han, R. Babicheva, J.D.Q. Chua, U. Ramamurty, S.B. Tor, C.-N. Sun, and K. Zhou: Addit. Manuf., 2020, vol. 36, p. 101466.

    CAS  Google Scholar 

  4. C. Landron, X. Launay, J.C. Rifflet, P. Echegut, Y. Auger, D. Ruffier, J.P. Coutures, M. Lemonier, M. Gailhanou, M. Bessiere, D. Bazin, and H. Dexpert: Nucl. Instrum. Methods Phys. Res. B, 1997, vol. 124, pp. 627–32.

    Article  CAS  Google Scholar 

  5. T. Usui, S. Shiratori, K. Tanimoto, S. Ozawa, T. Ishikawa, S. Suzuki, H. Nagano, and K. Shimano: Int. J. Microgravity Sci. Appl., 2023, vol. 40, p. 400302.

    Google Scholar 

  6. R.W. Hyers: Meas. Sci. Technol., 2005, vol. 16, pp. 394–401.

    Article  CAS  Google Scholar 

  7. D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht, and A.L. Greer: Int. Mater. Rev., 1993, vol. 38, pp. 273–347.

    Article  CAS  Google Scholar 

  8. H. Yasuda: Solidification of Containerless Undercooled Melts, 1st ed. Wiley-VCH, Berlin, 2012, pp. 305–20.

    Book  Google Scholar 

  9. X. Ge, X. Xu, Q. Hu, W. Lu, L. Yang, S. Cao, M. **a, and J. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1636–43.

    Article  CAS  Google Scholar 

  10. M. Mojib, R. Pahuja, M. Ramulu, and D. Arola: Proc. ASME, 2020, IMECE2020-24194.

  11. X. Wang, G. Han, J. Ye, and C. Zhang: Proc. 2019 IEEE, 2019, pp. 1382–86.

  12. Y. Watanabe, M. Sato, T. Chiba, H. Sato, N. Sato, S. Nakano, and S. Suzuki: J. Jpn. Laser Process. Soc., 2019, vol. 26, pp. 46–50.

    Google Scholar 

  13. Y. Watanabe, M. Sato, T. Chiba, H. Sato, N. Sato, and S. Nakano: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1345–52.

    Article  Google Scholar 

  14. Y. Watanabe, S. Yamada, T. Chiba, H. Sato, S. Miura, K. Abe, and T. Kato: Materials, 2023, vol. 16(17), p. 5974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. Yamamoto, N. Date, Y. Mori, S. Suzuki, Y. Watanabe, S. Nakano, and N. Sato: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3174–85.

    Article  Google Scholar 

  16. N. Date, S. Yamamoto, Y. Watanabe, H. Sato, S. Nakano, N. Sato, and S. Suzuki: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 3609–27.

    Article  Google Scholar 

  17. Y. Watanabe, H. Sato, M. Mihara-Narita, and S. Sekiyama: Metallic Powder for Directed Energy Deposition and Its Fabrication Method, Japanese Patent Application No. 2023-201358, 2023.

  18. C. Hanada, H. Aoki, Y. Ueda, K. Kadoi, Y. Mabuchi, K. Yoneda, M. Yamada, H. Sato, Y. Watanabe, Y. Harada, S. Ozawa, S. Nakano, C. Koyama, H. Oda, T. Ishikawa, Y. Watanabe, T. Shimaoka, and S. Suzuki: Int. J. Microgravity Sci. Appl., 2023, vol. 40, p. 400301.

    Google Scholar 

  19. C. Mayer-Laigle, C. Gatumel, and H. Berthiaux: Chem. Eng. Res. Des., 2015, vol. 95, pp. 248–61.

    Article  CAS  Google Scholar 

  20. T. Ishikawa, C. Koyama, Y. Nakata, Y. Watanabe, and P. Paradis: J. Chem. Thermodyn., 2021, vol. 163, p. 106598.

    Article  CAS  Google Scholar 

  21. Y. Mabuchi, C. Hanada, Y. Ueda, K. Kadoi, Y. Kushiya, H. Aoki, R. Saguchi, K. Yoneda, M. Yamada, H. Sato, Y. Watanabe, S. Ozawa, S. Nakano, C. Koyama, H. Oda, T. Ishikawa, Y. Watanabe, T. Shimaoka, and S. Suzuki: Int. J. Microgravity Sci. Appl., 2024, vol . 41, p. 41020.

    Google Scholar 

  22. S. Ozawa, Y. Nagasaka, M. Itakura, K. Sugisawa, and Y. Seimiya: J. Appl. Phys., 2021, vol. 130, p. 135101.

    Article  CAS  Google Scholar 

  23. Y. Seimiya, Y. Kudo, R. Shinazawa, Y. Watanabe, T. Ishikawa, and S. Ozawa: Metals, 2022, vol. 12, p. 1129.

    Article  CAS  Google Scholar 

  24. Y. Seimiya, R. Shinazawa, T. Katsumi, and S. Ozawa: Int. J. Microgravity Sci. Appl., 2024, vol. 41, p. 410102.

    Google Scholar 

  25. M.V. Kumar, T. Ishikawa, B. Basavalingu, J.T. Okada, and Y. Watanabe: J. Appl. Phys., 2013, vol. 113, p. 193503.

    Article  Google Scholar 

  26. W.G. Burgers: Physica, 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  27. C. Cayron, B. Artaud, and L. Briottet: Mater. Charact., 2006, vol. 57, pp. 386–401.

    Article  CAS  Google Scholar 

  28. M. Humbert and N. Gey: J. Appl. Crystallogr., 2002, vol. 35, pp. 401–05.

    Article  CAS  Google Scholar 

  29. M. Watanabe, M. Adachi, and H. Fukuyama: J. Mol. Liq., 2021, vol. 324, p. 115138.

    Article  CAS  Google Scholar 

  30. Y. Mabuchi, C. Hanada, Y. Ueda, K. Kadoi, H. Aoki, R. Saguchi, M. Yamada, H. Sato, Y. Watanabe, S. Ozawa, S. Shiratori, S. Nakano, C. Koyama, H. Oda, T. Ishikawa, Y. Watanabe, and S. Suzuki: Int. J. Microgravity Sci. Appl., 2024, vol. 41, p. 410101.

    Google Scholar 

  31. T. Ishikawa, J.T. Okada, P.-F. Paradis, and Y. Watanabe: Jpn. J. Appl. Phys., 2011, vol. 50, p. 11RD03.

    Article  Google Scholar 

  32. L. Bolzoni, M. **a, and N.H. Babu: Sci. Rep., 2016, vol. 6, p. 39554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, and A. Srivastava: J. Appl. Phys., 2010, vol. 108, p. 114912.

    Article  Google Scholar 

  34. Y. Mabuchi, C. Hanada, H. Aoki, K. Kadoi, Y. Ueda, Y. Kushiya, R. Saguchi, K. Yoneda, M. Yamada, H. Sato, Y. Watanabe, S. Ozawa, S. Nakano, H. Oda, C. Koyama, T. Ishikawa, Y. Watanabe, and S. Suzuki: Metall. Mater. Trans. B. Published online in May 29, 2024.

  35. Y. Chong, R. Gholizadeh, K. Yamamoto, and N. Tsuji: Scripta Mater., 2023, vol. 203, p. 115397.

    Article  Google Scholar 

  36. B. Skallerud, T. Iveland, and G. Härkegård: Eng. Fract. Mech., 1993, vol. 44, pp. 857–74.

    Article  Google Scholar 

  37. O.E. Okorafor: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 463–68.

    Article  CAS  Google Scholar 

  38. S.F. Hussainy, M. Mohiuddin, P. Laxminarayana, S. Sundarrajan, and A. Krishnaiah: J. Manuf. Sci. Prod., 2016, vol. 16, pp. 1–9.

    Google Scholar 

  39. D.M. Matson, L. Battezzati, P.K. Galenko, C.-A. Gandin, A.K. Gangopadhyay, H. Henein, K.F. Kelton, M. Kolbe, J. Valloton, S.C. Vogel, and T. Volkmann: NJP Microgravity, 2023, vol. 65, pp. 1–14.

    Google Scholar 

  40. S. Berry, R.W. Hyers, B. Abedian, and L.M. Racz: Metall. Mater. Trans. B, 1998, vol. 31B, pp. 171–78.

    Google Scholar 

  41. X. **ao, R.W. Hyers, and D.M. Matson: Int. J. Heat Mass Transf., 2019, vol. 136, pp. 531–42.

    Article  Google Scholar 

  42. J. Lee, D.M. Matson, S. Binder, M. Kolbe, D. Herlach, and R.W. Hyers: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1018–23.

    Article  Google Scholar 

  43. A. Jakhar, A. Bhattacharya, P. Rath, and S.K. Mahapatra: J. Therm. Sci. Eng. Appl., 2019, vol. 11, p. 051010.

    Article  CAS  Google Scholar 

  44. C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma, and X. Tong: J. Comput. Phys., 1999, vol. 154, pp. 468–96.

    Article  CAS  Google Scholar 

  45. A. Kao, L.V. Toropova, I. Krastins, G. Demange, D.V. Alexandrov, and P.K. Galenko: JOM, 2020, vol. 72, pp. 3123–31.

    Article  Google Scholar 

  46. H. Soltani, G. Reinhart, M.C. Benoudia, F. Ngomesse, M. Zahzouh, and H. Nguyen-Thi: J. Cryst. Growth, 2020, vol. 548, p. 125819.

    Article  CAS  Google Scholar 

  47. H. Li, K. Wang, G. Xu, H. Jiang, Q. Wang, and Y. Wang: J. Magnes. Alloy, 2021, pp. 1–14.

Download references

Acknowledgments

This study was conducted under the preliminary experiments of Hetero-3D Mission using the Japanese experiment module “Kibo” on the ISS. Furthermore, this work was conducted using research equipments (G1001, G1011, G1017, G1023, G1039, G1054, and G1055) with the help of the Joint Research Center for Environmentally Conscious Technologies in Materials Science, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University (JPMXP0723833151). Furthermore, we appreciate Kimura Foundry Co., Ltd. for its financial support. The work done at Nagoya Institute of Technology (NITech) was supported by Adaptable and Seamless Technology Transfer Program through Target-Driven R&D (A-STEP) from Japan Science and Technology Agency (JST) Grant Number JPMJTR23R3.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Hanada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figures A1 through A3.

Fig. A1
figure 19

Cross-sectional images of sintered sample with 5 mass pct TiC before levitation experiments obtained using SEM

Fig. A2
figure 20

Composition maps on the cross sections of the electrostatic levitation (ESL) sample obtained using SEM. (a) Sample with 2 mass pct TiC, and (b) sample with 5 mass pct TiC

Fig. A3
figure 21

Composition maps on the cross sections of the aerodynamic levitation (ADL) sample obtained using SEM. (a) Sample with 2 mass pct TiC, and (b) sample with 5 mass pct TiC

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanada, C., Mabuchi, Y., Kadoi, K. et al. Elucidation of Solidification Behavior of Ti–6Al–4V under Convection and a Temperature Gradient Using Levitation Methods. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03148-5

Navigation