Log in

Engineering the Protective Oxide Chemistry for Enhanced Corrosion Protection Performance of FeCuCrNiCo-CNT Composite Coatings in 3.5 M NaCl Solution Corrosive Media

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Publisher Correction to this article was published on 19 June 2023

This article has been updated

Abstract

Direct electrodeposition method was used to co-electrodeposit different volume fractions of carbon nanotubes in FeCuCrNiCo high entropy alloy matrix. Phase constitution, morphology, wettability, protective oxide film chemistry, and corrosion behavior of the composite coatings were studied as a function of volume fraction of carbon nanotubes (CNTs). Pristine HEA coating contained mixture of body-centered cubic (bcc) and face-centered cubic (fcc) phases which transformed into nearly single-phase body-centered cubic microstructure with the incorporation of CNTs upto a certain optimum volume fraction. The phase heterogeneity, however, re-appeared for higher CNT additions. The coating morphology showed a transition from one containing mixture of dendritic and granular features to a more compact, smooth, and fine-grained globular matrix with CNT incorporation. A monotonic increase in the water contact angle was also observed with increasing CNT content in the composite coating. Weight loss and potentiodynamic polarization techniques employed for coating corrosion analysis showed that the corrosion behavior of pristine coating was highly sensitive to the amount of reinforced CNTs. Addition of an optimum CNT amount in HEA coating (produced from an electrolyte with 12.5 mg/L of dispersed CNTs) led to a considerable decrease (85.6 pct) in the corrosion rate (compared to the pristine HEA coating). In addition to improved morphology, phase homogenization, and increased contact angle, the reason for this significant improvement was also attributed to the evolution of protective oxides like Cr2O3 and NiO in case of HEA-CNT composite with optimum CNT concentration. For higher CNT additions, a drastic decrease in the protection efficiency was observed because of re-appearance of phase heterogeneity. This promoted galvanic coupling and due to the presence of surface defects in forms of cracks arising due to the presence of agglomerated CNTs in the electrodeposited coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Change history

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 213–18

    Article  Google Scholar 

  2. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511

    Article  CAS  Google Scholar 

  3. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irvin, and C.C. Koch: Mater. Res. Lett., 2015, vol. 3, pp. 95–99

    Article  CAS  Google Scholar 

  4. A.A. Rempel and B.R. Gelchinski: Steel Transl., 2020, vol. 50, pp. 243–47

    Article  Google Scholar 

  5. Y. Shi, B. Yang, and P.K. Liaw: Metals, 2017, vol. 7, pp. 1–8

    Article  Google Scholar 

  6. X.L. Shang, Z.J. Wang, H.E. Feng, J.C. Wang, J.J. Li, and J.K. Yu: Sci. China Technol. Sci, 2018, vol. 61, pp. 189–96

    Article  Google Scholar 

  7. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang: Mater. Today Commun., 2016, vol. 19, pp. 349–62

    Article  CAS  Google Scholar 

  8. Y.J. Hsu, W.C. Chiang, and J.K. Wu: Mater. Chem. Phys., 2005, vol. 92, pp. 112–17

    Article  CAS  Google Scholar 

  9. Y. Garip: Corros. Sci., 2022, vol. 206, p. 110497

    Article  CAS  Google Scholar 

  10. X.-W. Qiu and C.-G. Liu: J. Alloys Compd., 2013, vol. 553, pp. 216–20

    Article  CAS  Google Scholar 

  11. Y. Guo, X. Shang, and Q. Liu: Surf. Coat. Technol., 2018, vol. 344, pp. 353–58

    Article  CAS  Google Scholar 

  12. X. Li, Y. Feng, B. Liu, D. Yi, X. Yang, W. Zhang, G. Chen, Y. Liu, and P. Bai: J. Alloys Compd., 2019, vol. 788, pp. 485–94

    Article  CAS  Google Scholar 

  13. J. Cheng, D. Liu, X. Liang, and Y. Chen: Surf. Coat. Technol., 2015, vol. 281, pp. 109–16

    Article  CAS  Google Scholar 

  14. J.-W. Yeh: Eur J Control, 2006, vol. 31, pp. 633–48

    CAS  Google Scholar 

  15. A. Aliyu, M.Y. Rekha, and C. Srivastava: Philos. Mag. 2018, vol. 99, pp. 1–18

  16. S. Singh, S.M. Shaikh, M.K.P. Kumar, B.S. Murty, and C. Srivastava: Materialia, 2020, vol. 14, p. 100917

    Article  CAS  Google Scholar 

  17. M.J. Popescu, F. Branzoi, I. Constantin, M. Anastasescu, M. Burada, D. Mitric, I. Anasiei, M.-T. Olaru, and V. Constantin: Coatings, 2021, vol. 11, p. 1367

    Article  CAS  Google Scholar 

  18. S. Praveen, B.S. Murty, and R.S. Kottada: Mater. Sci. Eng. A, 2012, vol. 534, pp. 83–89

    Article  CAS  Google Scholar 

  19. S. Ozturk, F. Alptekin, S. Onal, S.E. Sunbul, O. Sahin, and K. Icin: J. Alloys Compd., 2022, vol. 903, p. 163867

    Article  CAS  Google Scholar 

  20. A. Singh, T. Ram Prabhu, A.R. Sanjay, and V. Koti: Mater. Today: Proc., 2017, vol. 4, pp. 3872–881

    Google Scholar 

  21. R.I. Rubel, M.H. Ali, M.A. Jafor, and M.M. Alam: AIMS Mater. Sci., 2019, vol. 6, pp. 756–80

    Article  Google Scholar 

  22. D. Wang, Y. Xu, D. **ao, Q. Qiao, P. Yin, Z. Yang, J. Li, W. Winchester, Z. Wang, and T. Hayat: J. Hazard. Mater., 2019, vol. 371, pp. 83–93

    Article  CAS  Google Scholar 

  23. R. Ramachandran and M. Nosonovsky: Phys. Chem, 2015, vol. 17, pp. 24988–4997

    CAS  Google Scholar 

  24. T. Zheng, Y. Hu, Y. Zhang, and F. Pan: J. Colloid Interface Sci., 2017, vol. 505, pp. 87–95

    Article  CAS  Google Scholar 

  25. K. Baratpour: ASTM, 2004, vol. G31–72, pp. 1–8

    Google Scholar 

  26. R. Mishra and R. Balasubramaniam: Corros. Sci., 2004, vol. 46, pp. 3019–029

    Article  CAS  Google Scholar 

  27. S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M.E. Orazem: Nat. Rev. Methods Prim., 2021, vol. 41, pp. 1–21

    CAS  Google Scholar 

  28. C. Ji, A. Ma, and J. Jiang: J. Alloys Compd., 2022, vol. 900, p. 163508

    Article  CAS  Google Scholar 

  29. M. Liu, X. Cheng, X. Li, Y. Pan, and J. Li: Appl. Surf. Sci., 2016, vol. 389, pp. 1182–191

    Article  CAS  Google Scholar 

  30. S. He and D. Jiang: Int. J. Electrochem. Sci., 2018, vol. 13, pp. 5822–849

    Google Scholar 

  31. W.A. Badawy, F.M. Al-Kharafi, and J.R. Al-Ajmi: J. Appl. Electrochem., 2000, vol. 30, pp. 693–704

    Article  CAS  Google Scholar 

  32. J.-Y. Jiang, D. Wang, H.-Y. Chu, H. Ma, Y. Liu, Y. Gao, J. Shi, and W. Sun: Materials (Basel), 2017, vol. 10, pp. 1–2

    Google Scholar 

  33. H. Luo, Z. Li, A.M. Mingers, and D. Raabe: Corros. Sci., 2018, vol. 134, pp. 131–39

    Article  CAS  Google Scholar 

  34. M. Steimecke, G. Seiffarth, C. Schneemann, F. Oehler, S. Förster, and M. Bron: ACS Catal., 2020, vol. 10, pp. 3595–603

    Article  CAS  Google Scholar 

  35. T. **, M.B. Shahzad, D. Xu, Z. Sun, J. Zhao, C. Yang, M. Qi, and K. Yang: Mater. Sci. Eng. C, 2017, vol. 17, pp. 1079–085

    Article  Google Scholar 

  36. M. Seo, G. Hultquist, C. Leygraf, and N. Sato: Corros. Sci., 1986, vol. 26, pp. 949–60

    Article  CAS  Google Scholar 

  37. L. Huang, X. Wang, X. Zhao, C.Z. Wang, and Y. Yang: Mater. Chem. Phys., 2021, vol. 259, p. 124007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research funding received from the SERB Government of India.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Srivastava, C. Engineering the Protective Oxide Chemistry for Enhanced Corrosion Protection Performance of FeCuCrNiCo-CNT Composite Coatings in 3.5 M NaCl Solution Corrosive Media. Metall Mater Trans A 54, 1398–1413 (2023). https://doi.org/10.1007/s11661-023-06994-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-06994-1

Navigation