Log in

Grain Boundary Engineering in Electrodeposited Tin-Carbon Nanotube Composite Coatings for Enhanced Corrosion Resistance Performance

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This research was conducted to explore the potential of incorporating carbon nanotubes (CNTs) into metallic tin (Sn) to enhance its corrosion-resistant property. Specific objective was to study the correlation between coating morphology, micro-texture, and corrosion behavior of Sn-CNT composite coatings. The study showed existence of an optimum CNT concentration that yields high corrosion resistance. The composite coatings were formed over steel substrate by electrodeposition from a sulfate electrolyte bath. Tafel Polarization and electrochemical impedance spectroscopy analyses were conducted to assess the corrosion rates of the coatings. X-ray photoelectron spectroscopy (XPS) was utilized to characterize the nature and fraction of oxides present on the coating surface. Additionally, electron backscatter diffraction (EBSD) studies were performed to evaluate the surface texture and grain boundary constitution of the electrodeposited coatings. It was observed that lower CNT content resulted in finer coating morphology, while higher CNT volume fractions led to non-homogenous and coarser morphologies. The corrosion rate of the Sn-CNT composite coatings was highly sensititve to the CNT content. An optimum CNT concentration demonstrated higher corrosion resistance, with a significant 94 pct decrease in the corrosion current (icorr) compared to the pristine Sn coating. However, increasing the CNT content beyond the optimum level resulted in a decline in corrosion resistance, eventually becoming inferior to the pristine Sn coating. The incorporation of an optimum amount of CNTs into the Sn coating matrix enhanced the fraction of coincidence site lattices (CSLs) in the grain boundary structure. The study highlights the potential of CNT-Sn composites for corrosion-resistant materials and emphasizes the importance of controlling the CNT content to achieve optimal corrosion protection. These findings contribute to the understanding of how carbon nanotubes can be utilized to enhance the performance of metal matrix composites as corrosion-resistant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Gupta and C. Srivastava: Scr. Mater., 2021, vol. 196, 113763.

    Article  CAS  Google Scholar 

  2. R. Berlia, M.K.P. Kumar, and C. Srivastava: RSC Adv., 2015, vol. 5, pp. 71413–18.

    Article  CAS  Google Scholar 

  3. A. Gupta and C. Srivastava: Thin Solid Films, 2019, vol. 669, pp. 85–95.

    Article  CAS  Google Scholar 

  4. S.R.F. Lala, K.S. Jyotheender, A. Gupta, S. Arora, et al.: Materialia (Oxford), 2020, vol. 14, p. 100944.

    Article  CAS  Google Scholar 

  5. A.P. Singh and C. Srivastava: Corros. Sci., 2023, vol. 215, 111039.

    Article  CAS  Google Scholar 

  6. S.R.F. Lala, A.P. Singh, S. Singh, S.C. Tiwari, and C. Srivastava: Materialia, 2023, vol. 27, p. 101.

    Article  Google Scholar 

  7. S.R.F. Lala, A. Gupta, and C. Srivastava: Metall. Mater. Trans. A, 2022, vol. 53, pp. 3795–3806.

    Article  CAS  Google Scholar 

  8. S. Attarilar, M. Ebrahimi, T.H. Hsieh, J.Y. Uan, and C. Göde: Mater. Sci. Eng. A., 2015, https://doi.org/10.1016/j.msea.2020.140489.

    Article  Google Scholar 

  9. X.H. Chen, C.S. Chen, H.N. **ao, F.Q. Cheng, G. Zhang, and G.J. Yi: Surf. Coat. Technol., 2005, vol. 191, pp. 351–56.

    Article  CAS  Google Scholar 

  10. A. Zarebidaki and S.-R. Allahkaram: J. Alloys Compd., 2011, vol. 509, pp. 1836–40.

    Article  CAS  Google Scholar 

  11. K.S. Jyotheender, A. Gupta, and C. Srivastava: Materialia (Oxford), 2020, vol. 9, 100617.

    Article  CAS  Google Scholar 

  12. P. Hammer, F.C. dos Santos, B.M. Cerrutti, S.H. Pulcinelli, and C.V. Santilli: Prog. Org. Coat., 2013, vol. 76, pp. 601–08.

    Article  CAS  Google Scholar 

  13. M.A. Deyab: Prog. Org. Coat., 2015, vol. 85, pp. 146–50.

    Article  CAS  Google Scholar 

  14. B.-E. Gu, C.-Y. Huang, T.-H. Shen, and Y.-L. Lee: Prog. Org. Coat., 2018, vol. 121, pp. 226–35.

    Article  CAS  Google Scholar 

  15. G.M. Kumar, K.S. Jyotheender, and C. Srivastava: Materialia, 2022, vol. 24, 101500.

    Article  CAS  Google Scholar 

  16. P. Jagtap, A. Chakraborty, P. Eisenlohr, and P. Kumar: Acta Mater., 2017, vol. 134, pp. 346–59.

    Article  CAS  Google Scholar 

  17. A.R.B. Comizzoli, R.P. Frankenthal, K.J. Hanson, K. Konstadinidis, R.L. Opila, J. Sapjeta, J.D. Sinclair, K.M. Takahashi, A.L. Frank, and A.O. Ibidunni: Mater. Sci. Eng. A., 1995, vol. 198, pp. 153–60.

    Article  Google Scholar 

  18. A.W. Burton, K. Ong, T. Rea, and I.Y. Chan: Microporous Mesoporous Mater., 2009, vol. 117, pp. 75–90.

    Article  CAS  Google Scholar 

  19. P. Zhang, Y. Gao, Z. Liu, S. Zhang, S. Wang, and Z. Lin: Vacuum, 2023, vol. 212, 111968.

    Article  CAS  Google Scholar 

  20. Z. Liu, B. Fan, J. Zhao, B. Yang, and X. Zheng: Corros. Sci., 2023, vol. 212, 110957.

    Article  CAS  Google Scholar 

  21. C. Gode, S. Attarilar, B. Eghbali, and M. Ebrahimi: AIP Conf. Proc., 2015, vol. 1653, p. 20041.

    Article  Google Scholar 

  22. M. Ebrahimi, S. Attarilar, M.H. Shaeri, C. Gode, H. Armoon, and F. Djavanroodi: Arch. Civil Mech. Eng., 2019, vol. 19, pp. 842–50.

    Article  Google Scholar 

  23. Y. Liu, B. Fan, B. Xu, and B. Yang: Mater. Lett., 2023, vol. 337, 133979.

    Article  CAS  Google Scholar 

  24. K.S. Jyotheender and C. Srivastava: Materialia (Oxford), 2022, vol. 22, 101431.

    Article  CAS  Google Scholar 

  25. M.Y. Rekha and Y.C. Srivastava: Corros. Sci., 2019, vol. 152, pp. 234–48.

    Article  Google Scholar 

  26. P. Wang, D. Zhang, R. Qiu, Y. Wan, and J. Wu: Corros. Sci., 2014, vol. 80, pp. 366–73.

    Article  CAS  Google Scholar 

  27. A.P. Singh and C. Srivastava: Corros. Sci., 2023, vol. 211, 110787.

    Article  CAS  Google Scholar 

  28. C. Liu, Q. Bi, A. Leyland, and A. Matthews: Corros. Sci., 2003, vol. 45, pp. 1257–73.

    Article  CAS  Google Scholar 

  29. L. Liu, Y. Li, C. Zeng, and F. Wang: Electrochim. Acta, 2006, vol. 51, pp. 4736–43.

    Article  CAS  Google Scholar 

  30. Y. Kang, J. Park, D.-W. Kim, H. Kim, and Y.-C. Kang: Surf. Interface Anal., 2018, vol. 50, pp. 138–45.

    Article  CAS  Google Scholar 

  31. Y. Kang, J. Park, D.-W. Kim, H. Kim, and Y.-C. Kang: Appl. Surf. Sci., 2016, vol. 389, pp. 1012–16.

    Article  CAS  Google Scholar 

  32. X. Cheng, D. Bian, S. Tian, H. Li, H. Dou, Z. Zhao, and X. Wang: Electrochim. Acta, 2022, vol. 430, 141045.

    Article  CAS  Google Scholar 

  33. M. Jung, G. Lee, and J. Choi: Electrochim. Acta, 2017, vol. 241, pp. 229–36.

    Article  CAS  Google Scholar 

  34. F.A. Akgul, C. Gumus, A.O. Er, A.H. Farha, G. Akgul, Y. Ufuktepe, and Z. Liu: J. Alloys Compd., 2013, vol. 579, pp. 50–56.

    Article  CAS  Google Scholar 

  35. X. Yang, D. Wang, Z. Wu, J. Yi, S. Ni, Y. Du, and M. Song: Mater. Sci. Eng. A, 2016, vol. 658, pp. 16–27.

    Article  CAS  Google Scholar 

  36. H. Beladi and G.S. Rohrer: Mater. Sci. Eng. A, 2013, vol. 44, pp. 115–24.

    CAS  Google Scholar 

  37. A. Gupta and C. Srivastava: Corros. Sci., 2022, vol. 194, 109945.

    Article  CAS  Google Scholar 

  38. G.M. Kumar and C. Srivastava: Metall. Mater. Trans. A, 2023, https://doi.org/10.1007/s11661-023-07011-1.39.

    Article  Google Scholar 

  39. S.R.F. Lala, A. Gupta, and C. Srivastava: Philos. Mag., 2022, vol. 102, pp. 522–41.

    Article  CAS  Google Scholar 

  40. S.R.F. Lala and C. Srivastava: Mater. Sci. Eng. A, 2023, vol. 54, pp. 634–45.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research funding form the Department of Science and technology Goverenment of India. Electron microscopy facilities in AFMM, IISc are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Srivastava.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dammu, S., Singh, A.P., Lala, S.R.F. et al. Grain Boundary Engineering in Electrodeposited Tin-Carbon Nanotube Composite Coatings for Enhanced Corrosion Resistance Performance. Metall Mater Trans A 54, 3928–3939 (2023). https://doi.org/10.1007/s11661-023-07143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07143-4

Navigation