Log in

Quantitative Comparison of the Recrystallization Kinetics of Two Industrially Processed 5xxx Aluminum Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 26 November 2021

This article has been updated

Abstract

The annealing kinetics of cold-rolled AA5182 and AA5657 aluminum alloy sheets have been investigated and compared. The microstructures of a series of partially recrystallized samples are characterized by electron back scattered diffraction and key stereological parameters including volume fraction recrystallized, interfacial areas and contiguity are determined. The overall recrystallization kinetics as well as the nucleation and growth rates are thereby quantified. The results reveal that the nuclei develop in clusters. This matches well with the observation of a low kinetics exponent n = 2 in AA5182. Much more surprising is that n is 2.8 in AA5657, even though the nucleation is clustered. Also, it is higher than almost all recrystallization kinetics investigations which generally find values significantly below 3. Effects of nucleation rate, spatial distribution of nuclei and growth rate are discussed and used in a quantitative analysis of recrystallization kinetics in the two alloys.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. E.H. Dix Jr., W.A. Anderson, and M.B. Shumaker: Alum. Co. Am

  2. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  3. A.N. Kolmogorov: Bull. Acad. Sci. USSR Math. Ser., 1937, vol. 1, pp. 355–9.

    Google Scholar 

  4. W.A. Johnson and R.F. Mehl: Trans. AIME., 1939, vol. 135, pp. 396–415.

    Google Scholar 

  5. R.A. Vandermeer and D. Juul Jensen: Acta Mater., 2003, vol. 51, pp. 3005–18.

    Article  CAS  Google Scholar 

  6. J. Tarasiuk, P. Gerber, and B. Bacroix: Acta Mater., 2002, vol. 50, pp. 1467–77.

    Article  CAS  Google Scholar 

  7. P.H. Gerber, J. Tarasiuk, R. Chiron, and B. Bacroix: Arch. Metall. Mater., 2005, vol. 50, p. 1.

    Google Scholar 

  8. A. Ayad, M. Ramoul, A.D. Rollett, and F. Wagner: Mater. Charact., 2021, vol. 171, p. 110773.

    Article  CAS  Google Scholar 

  9. H. Buken and E. Kozeschnik: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 544–52.

    Article  Google Scholar 

  10. X.C. Lei, R.E. Sanders, X.F. Yang, and D.J. Jensen: IOP Conf. Ser. Mater. Sci. Eng. https://doi.org/10.1088/1757-899X/580/1/012037.

  11. E. Nes: Acta Metall., 1976, vol. 24, pp. 391–8.

    Article  CAS  Google Scholar 

  12. R.A. Vandermeer and D. Juul Jensen: Scr. Metall. Mater., 1994, vol. 30, pp. 1575–80.

    Article  CAS  Google Scholar 

  13. R.A. Vandermeer and B.B. Rath: Metall. Trans. A., 1989, vol. 20, pp. 391–401.

    Article  Google Scholar 

  14. P.S. De, A. Vuppuluri, S.S. Vadlamani, and S. Vedantam: J. Mater. Sci.

  15. R.A. Vandermeer and D. Juul Jensen: Acta Metall. Mater., 1994, vol. 42, pp. 2427–36.

    Article  CAS  Google Scholar 

  16. R.A. Vandermeer: Acta Mater., 2005, vol. 53, pp. 1449–57.

    Article  CAS  Google Scholar 

  17. D. Juul Jensen: Acta Metall. Mater., 1995, vol. 43, pp. 4117–29.

    Article  Google Scholar 

  18. R.D. Doherty, I. Samajdar, C.T. Necker, H.E. Vatne, and E. Nes: in Proceedings of the 16th Risø International Symposium, Roskilde, 1995, pp. 1–24.

  19. F. Lin, Y. Zhang, and W. Pantleon: Metall. Mater. Trans. A., 2018, vol. 49A, pp. 5246–58.

    Article  Google Scholar 

  20. K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé: Prog. Mater. Sci., 2018, vol. 92, pp. 284–359.

    Article  CAS  Google Scholar 

  21. K. Huang, N. Wang, Y. Li, and K. Marthinsen: Mater. Sci. Eng. A., 2014, vol. 601, pp. 86–96.

    Article  CAS  Google Scholar 

  22. K. Huang, K. Zhang, K. Marthinsen, and R.E. Logé: Acta Mater., 2017, vol. 141, pp. 360–73.

    Article  CAS  Google Scholar 

  23. Q. Zhao, K. Huang, Y. Li, and K. Marthinsen: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 1378–88.

    Article  Google Scholar 

  24. J.R.C. Guimarães and P.R. Rios: J. Mater. Sci., 2009, vol. 44, pp. 998–1005.

    Article  Google Scholar 

  25. R.A. Vandermeer, R.A. Masumura, and B.B. Rath: Acta Metall. Mater., 1991, vol. 39, pp. 383–9.

    Article  CAS  Google Scholar 

  26. P.R. Rios, R.B. Godiksen, S. Schmidt, D. Juul Jensen, and R.A. Vandermeer: Scr. Mater., 2006, vol. 54, pp. 1509–13.

    Article  CAS  Google Scholar 

  27. R.A. Vandermeer and D. JuulJensen: Acta Mater., 2001, vol. 49, pp. 2083–94.

    Article  CAS  Google Scholar 

  28. G.B. Burger, A.K. Gupta, P.W. Jeffrey, and D.J. Lloyd: Mater. Charact., 1995, vol. 35, pp. 23–39.

    Article  CAS  Google Scholar 

  29. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge: Mater. Sci. Eng. A., 2000, vol. 280, pp. 37–49.

    Article  Google Scholar 

  30. R.E. Sanders, S.F. Baumann, and H.C. Stumpf: in Aluminium alloys—contemporary research and applications, A.K. Vasudevan and R.D. Doherty, eds., vol. 31, Academic Press, San Diego, 1989, pp. 65–105.

  31. J.W. Cahn and W.C. Hagel: Decomposition of Austenite by Diffusional Processes, Interscience, 1962.

  32. P. Ratchev, B. Verlinden, and P. Van Houtte: Acta Metall. Mater., 1995, vol. 43, pp. 621–9.

    Article  CAS  Google Scholar 

  33. F.J. Humphreys: Acta Metall., 1977, vol. 25, pp. 1323–44.

    Article  CAS  Google Scholar 

  34. H. Luo, J. Sietsma, and S. van der Zwaag: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 1889–98.

    Article  CAS  Google Scholar 

  35. E.E. Underwood: in Quantitative Microscopy, R.T. DeHoff and F.N. Rhines, eds., Mcgraw-Hill, New York, 1968, pp. 77–127.

  36. R.A. Vandermeer and R.A. Masumura: Acta Metall. Mater., 1992, vol. 40, pp. 877–86.

    Article  CAS  Google Scholar 

  37. A.T. English and W.A. Backofen: Trans. Metall. Soc. AIME., 1964, vol. 230, pp. 396–407.

    CAS  Google Scholar 

  38. X. Lei, Y. Zhang, J. Sun, F. Bachmann, X. Yang, R.E. Sanders, and D. Juul Jensen: Mater. Res. Lett. https://doi.org/10.1080/21663831.2020.1822455.

  39. Y. Zhang, D. Juul Jensen, Y. Zhang, F. Lin, Z. Zhang, and Q. Liu: Scr. Mater., 2012, vol. 67, pp. 320–3.

    Article  CAS  Google Scholar 

  40. J. Sun, T. Yu, C. Xu, W. Ludwig, and Y. Zhang: Scr. Mater., 2018, vol. 157, pp. 72–5.

    Article  CAS  Google Scholar 

  41. G.L. Wu and D.J. Jensen: Philos. Mag., 2012, vol. 92, pp. 3381–91.

    Article  CAS  Google Scholar 

  42. Y.B. Zhang, J.D. Budai, J.Z. Tischler, W. Liu, R. Xu, E.R. Homer, and A. Godfrey: Sci. Rep., 2017, vol. 7, pp. 1–8.

    Article  Google Scholar 

  43. V. Marx and F.R. Reher: Acta Mater., 1999, vol. 47, pp. 1219–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by the National Natural Science Foundation of China (Grant Nos. 51421001, 51571046), and the Project No. 2020CDJDCL001 supported by the Fundamental Research Funds for the Central Universities. Furthermore, we appreciate the support from the 111 Project (B16007) by the Ministry of Education and the State Administration of Foreign Experts Affairs of China. FXL and DJJ acknowledge the funding from the European Research Council (ERC Grant Agreement No. 788567 M4D) which had covered our part of this work. RES acknowledges the materials supported from Novelis and XCL acknowledges the help of TEM samples preparation from YCQ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ** shows, the tiny precipitates are mainly Mn-containing.

Fig. A1
figure 11

Backscatter electron (BSE) images of ex situ AA5182 with (a) and (c) as-rolled state and (b) and (d) annealing for 300 minutes at 245 °C, and AA5657 with (e) as-recovered state and (f) annealed for 80 min at 300 °C. Some tiny precipitated dispersoids are marked in yellow dotted box in (b) and (d). TEM micrograph of (g) AA5182 with annealing for 360 min at 245 °C, EDS map**s of the particles marked in (g) are shown in (h) and some tiny precipitated dispersoids along RD are mainly Mn-containing (Color figure online)

1.2 Comparison of Nuclei Density and Extended Nuclei Density

The extended nuclei density \({N}_{\text{Vex}}\) is the imaginary nuclei density found when nucleation is assumed to occur both in unrecrystallized and in already recrystallized regions. It can be calculated as the integral of the nucleation rate \(\dot{N}\) over time. The real nuclei density NV includes only nucleation in the unrecrystallized regions and thus there is a need to exclude any nucleation within the recrystallized regions. If the nuclei are randomly distributed, the possibility that a nucleus is located in unrecrystallized regions is proportional to the volume fraction of the unrecrystallized material, 1 − VV. Thus, the real nucleation rate, \({\text{d}}{N}_{V}/{\text{d}}t\), equals to \(\dot{N}(1-{V}_{V})\).

If \(\dot{N}\) and VV are expressed as follows:

$$ \dot{N} = N_{1} t^{\delta - 1} $$
(A1)
$$ V_{V} = 1 - {\text{exp}}\left( { - Bt^{n} } \right) $$
(A2)

\({N}_{\text{Vex}}\) and NV can be written as:

$$ N_{Vex} = \mathop \smallint \limits_{0}^{t} \dot{N}{\text{d}}\tau = \mathop \smallint \limits_{0}^{t} N_{1} \tau^{\delta - 1} {\text{d}}\tau = \frac{{N_{1} }}{\delta }t^{\delta } \quad \left( {{\text{if}} \delta \ne 0} \right) $$
(A3)
$$ N_{V} = \mathop \smallint \limits_{0}^{t} \dot{N}\left( {1 - V_{V} } \right){\text{d}}\tau = \mathop \smallint \limits_{0}^{t} N_{1} \tau^{\delta - 1} \exp \left( { - B\tau^{n} } \right){\text{d}}\tau $$
(A4)

The second integral is not straight forward to solve analytically, but can be calculated numerically. The values of N1, δ, B and n determined from the slopes and intercepts of the fitted lines in Figures 10(c) and (d) and Figures 5(a) and (b) are used in Eqs. [A3] and [A4] to find the differences between \({N}_{Vex}\) and NV for the two alloys studied in this work. As shown in Figure A2, it is seen that the differences between the calculated \({N}_{V{\text{ex}}}\) (dashed red lines) and NV (solid blue curves) are not significant before 600 minutes for AA5182 and 120 minutes for AA5657, which correspond to recrystallization fraction of around 70 pct for both alloys.

Fig. A2
figure 12

Comparison of NV and \({N}_{Vex}\) for (a) AA5182 and (b) AA5657

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Sanders, R.E., Yang, X. et al. Quantitative Comparison of the Recrystallization Kinetics of Two Industrially Processed 5xxx Aluminum Alloys. Metall Mater Trans A 52, 4827–4840 (2021). https://doi.org/10.1007/s11661-021-06427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06427-x

Navigation