Log in

Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The manganese concentration of steels which rely on transformation-induced plasticity is generally less than 2 wt pct. Recent work has highlighted the potential for strong and ductile alloys containing some 6 wt pct of manganese, but with aluminum additions in order to permit heat treatments which are amenable to rapid production. However, large concentrations of aluminum also cause difficulties during continuous casting. Alloy design calculations have been carried out in an effort to balance these conflicting requirements, while maintaining the amount of retained austenite and transformation kinetics. The results indicate that it is possible by adjusting the carbon and manganese concentrations to reduce the aluminum concentration, without compromising the mechanical properties or transformation kinetics. The deformation-induced transformation of retained austenite is explained quantitatively, for a range of alloys, in terms of a driving force which takes into account the very fine state of the retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Following,[18] \({\Updelta}{\sigma}\) (kg/mm2)=\(\frac{{\Updelta}H}{3}(0.1)^n, \) n is strain hardening coefficient

References

  1. Miller RL (1972) . Metall. Trans. 3:90–912

    Google Scholar 

  2. Suh D.W., Park S.J., Lee T.H., Oh C.S., Kim S.J (2010) . Metall. Mater. Trans. A 41A:397–408

    Article  CAS  Google Scholar 

  3. H. Aaronson, P.G. Domian, G.M. Pound: TMS-AIME, 1966, vol.236, pp.781–96.

    CAS  Google Scholar 

  4. Abdelaziz S., Megahed G., El-Mahallawi I., Ahmed H (2009) . Ironmak. Steelmak. 36:432–41

    Article  CAS  Google Scholar 

  5. Sundman B., Jansson B., Andersson J (1985) . CALPHAD 9:153–90

    Article  CAS  Google Scholar 

  6. Bratberg: TCFE6-TCS Steels/Fe-Alloys Database, Version 6.2: Tech. Rep.: Thermo-Calc Software AB, Stockholm, Sweden, 2011.

  7. C.F. Jatczak: SAE Technical Paper Series 800426: Tech. Rep., SAE, 1980.

  8. ASTM E8M3 Standard Test Method for Tension Testing of Metallic Materials.

  9. Yi H., Lee K.Y., Bhadeshia H (2011) . Mater. Sci. Technol. 27:525–29

    Article  CAS  Google Scholar 

  10. Brofman P., Ansell G (1983) .Metall. Mater. Trans. A 14A:1929–1931

    CAS  Google Scholar 

  11. Yang H.S., Bhadeshia H.K.D.H (2009) . Scripta Mater. 60:493–95

    Article  CAS  Google Scholar 

  12. W. Gerberich, G. Thomas, E. Parker, and V. Zackay: Metastable Austenite: Decomposition and Strength, in Second International Conference on Strength of Metals and Alloys, ASM International, Ohio, 1970, pp.984–99.

  13. Bhadeshia H.K.D.H (2002) . ISIJ International 42:1059–60

    Article  CAS  Google Scholar 

  14. Jang J.M., Kim S.J., Kang N.H., Cho K.M., Suh D.W (2009) . Met. Mater. Int. 15:909–16

    Article  CAS  Google Scholar 

  15. Sherif M., Garcia Mateo M., Sourmail T., Bhadeshia H (2004) . Mater. Sci. Technol. 20:319–22

    Article  CAS  Google Scholar 

  16. Ion J., Anisdahl L (1997) . J. Mater. Sci. Technol. 65:261–67

    Article  Google Scholar 

  17. Furnemont Q., Kempf M., Jacques P., Goken M., Delannay F (2002) . Mater. Sci. Eng. A328:26–32

    CAS  Google Scholar 

  18. Cahoon J., Broughton W., Kutzak A (1971) . Metall. Trans. 2:1979–83

    CAS  Google Scholar 

  19. Tomota Y., Kuroki K., Mori T., Tamura I (1976) . Mater. Sci. Eng. 24:85–94

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the POSCO Steel Innovation Programme, and to the World Class University Programme of the National Research Foundation of Korea, Ministry of Education, Science and Technology, project number R32-2008-000-10147-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Woo Suh.

Additional information

Manuscript submitted April 25, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, D.W., Ryu, J.H., Joo, M.S. et al. Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels. Metall Mater Trans A 44, 286–293 (2013). https://doi.org/10.1007/s11661-012-1402-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1402-3

Keywords

Navigation