Log in

The cooling models of Earth’s early mantle

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The thermal state of the early Earth’s interior and its way of cooling are crucial for its subsequent evolution. Earth is initially hot as it acquired enormous heat in response to violent processes during its formation, e.g., the Moon-forming giant impact, the segregation and formation of its metallic core, the tidal interaction with the early Moon, and the decay of radioactive elements, etc. In the meantime, the cooling mechanisms of early Earth’s mantle remain elusive despite their importance, and the previously proposed cooling models of the mantle are controversial. In this paper, we first reviewed several prevalent parameterized thermal evolution models of the early mantle. The models give unrealistic predictions since they were established solely based on a single tectonic regime, such as the stagnant-lid regime, or relied on the disputable existence of the plate tectonics prior to ~ 3.5 Ga. Then we argue that the mantle should have started to cool down from a very hot state after the solidification of the ferocious magma ocean. Instead of using one single scaling law to describe a single-stage model, we suggest that an episodic multi-stage cooling model (EMCM) of the early mantle could be more plausible to account for the mantle’s early cooling process. The model reconciles with the fact that the mantle cools down from a hot state prior to ~ 3.5 Ga and can also explain the well-constrained post-3.5 Ga thermal history of the mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified from Korenaga (2006, 2013)

Fig. 4
Fig. 5

Modified from Korenaga (2006)

Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe Y (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys Earth Planet Inter 100:27–39

    Article  Google Scholar 

  • Albarède F, Blichert-Toft J (2007) The split fate of the early Earth, Mars, Venus, and Moon. CR Geosci 339:917–927

    Article  Google Scholar 

  • Becquerel H (1896) Sur les radiations émises par phosphorescence. Comptes rendus de 1’Academie des Sciences. Paris 122:420–421

    Google Scholar 

  • Carr MH (1974) Tectonism and volcanism of the Tharsis Region of Mars. J Geophys Res 1896–1977(79):3943–3949

    Article  Google Scholar 

  • Cawood PA, Kroner A, Pisarevsky S (2006) Precambrian plate tectonics: criteria and evidence. GSA Today 16:4

    Article  Google Scholar 

  • Christensen UR (1984) Heat transport by variable viscosity convection and implications for the Earth’s thermal evolution. Phys Earth Planet Inter 35:264–282

    Article  Google Scholar 

  • Christensen UR (1985) Thermal evolution models for the Earth. J Geophys Res Solid Earth 90:2995–3007

    Article  Google Scholar 

  • Combes M, Grigné C, Husson L, et al (2012) Multiagent simulation of evolutive plate tectonics applied to the thermal evolution of the Earth. Geochem Geophys Geosyst 13

  • Conrad CP, Hager BH (1999) The thermal evolution of an Earth with strong subduction zones. Geophys Res Lett 26:3041–3044

    Article  Google Scholar 

  • Conrad CP, Hager BH (2001) Mantle convection with strong subduction zones. Geophys J Int 144:271–288

    Article  Google Scholar 

  • Curie M (1898) On a new, strongly radioactive substance, contained in pitchblende. Comptes Rendus 127:1215–1217

    Google Scholar 

  • Davies GF (1980) Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. J Geophys Res Solid Earth 85:2517–2530

    Article  Google Scholar 

  • Davies GF (1993) Cooling the core and mantle by plume and plate flows. Geophys J Int 115:132–146

    Article  Google Scholar 

  • Davies GF (2006) Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth Planet Sci Lett 243:376–382

    Article  Google Scholar 

  • Davies GF (2008) Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet Sci Lett 275:382–392

    Article  Google Scholar 

  • Davies GF (2011) Mantle convection for geologists. Cambridge University Press

    Book  Google Scholar 

  • Davies GF (2007) Controls on density stratification in the early mantle. Geochem Geophys Geosyst 8:Q04006. https://doi.org/10.1029/2006GC001414

  • Ernst WG (2017) Earth’s thermal evolution, mantle convection, and Hadean onset of plate tectonics. J Asian Earth Sci 145:334–348

    Article  Google Scholar 

  • Foley BJ, Bercovici D, Elkins-Tanton LT (2014) Initiation of plate tectonics from post-magma ocean thermochemical convection. J Geophys Res Solid Earth 119:8538–8561

    Article  Google Scholar 

  • Gargaud M, Martin H, López-García P et al (2013) Young Sun, Early Earth and the origins of life: lessons for astrobiology. Springer Science and Business Media, Berlin

    Google Scholar 

  • Gerya T (2011) Future directions in subduction modeling. J Geodyn 52:344–378

    Article  Google Scholar 

  • Gerya T (2014) Precambrian geodynamics: concepts and models. Gondwana Res 25:442–463

    Article  Google Scholar 

  • Greeley R, Spudis PD (1981) Volcanism on mars. Rev Geophys 19:13–41

    Article  Google Scholar 

  • Gurnis M (1989) A reassessment of the heat transport by variable viscosity convection with plates and lids. Geophys Res Lett 16:179–182

    Article  Google Scholar 

  • Hansen VL (2018) Global tectonic evolution of Venus, from exogenic to endogenic over time, and implications for early Earth processes. Philos Trans R Soc A Math Phys Eng Sci 376:20170412

    Article  Google Scholar 

  • Heller R, Duda J-P, Winkler M et al (2021) Habitability of the early Earth: liquid water under a faint young Sun facilitated by strong tidal heating due to a closer Moon. Paläontol Z 95:563–575

    Article  Google Scholar 

  • Herzberg C, Asimow P (2015) PRIMELT 3 MEGA. XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochem Geophys Geosyst 16:563–578

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292:79–88

    Article  Google Scholar 

  • Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosyst 9:Q09001. https://doi.org/10.1029/2008GC002057

  • Ivanov MA, Head JW (2013) The history of volcanism on Venus. Planet Space Sci 84:66–92

    Article  Google Scholar 

  • Jaupart C, Mareschal J-C (2010) Heat generation and transport in the Earth. Cambridge University Press

    Book  Google Scholar 

  • Jaupart C, Labrosse S, Lucazeau F, Mareschal J-C (2015) 7.06 - Temperatures, heat, and energy in the mantle of the earth. In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elsevier, Oxford, pp 223–270

    Chapter  Google Scholar 

  • Johnson TE, Brown M, Kaus BJP, VanTongeren JA (2014) Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat Geosci 7:47–52

    Article  Google Scholar 

  • Karato S, Barbot S (2018) Dynamics of fault motion and the origin of contrasting tectonic style between Earth and Venus. Sci Rep 8:1–11

    Article  Google Scholar 

  • Katz RF, Spiegelman M, Langmuir CH (2003) A new parameterization of hydrous mantle melting. Geochem Geophys Geosyst 4:1073. https://doi.org/10.1029/2002GC000433

  • Korenaga J (2006) Archean geodynamics and the thermal evolution of Earth. Geophys Monogr-Am Geophys Union 164:1437. https://doi.org/10.1029/2003GL016982

    Google Scholar 

  • Korenaga J (2008) Plate tectonics, flood basalts and the evolution of Earth’s oceans. Terra Nova 20:419–439

    Article  Google Scholar 

  • Korenaga J (2013) Initiation and evolution of plate tectonics on Earth: theories and observations. Annu Rev Earth Planet Sci 41:117–151

    Article  Google Scholar 

  • Korenaga J, Jordan TH (2002) Onset of convection with temperature- and depth-dependent viscosity. Geophys Res Lett 29:29-1–29-4

    Article  Google Scholar 

  • Korenaga J (2003) Energetics of mantle convection and the fate of fossil heat. Geophys Res Lett 30

  • Kröner A (1981) Precambrian plate tectonics. In: Developments in precambrian geology. Elsevier, pp 57–90

  • Lee T, Papanastassiou D, Wasserburg G (1977) Aluminum-26 in the early solar system-Fossil or fuel. Astrophys J 211:L107–L110

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McKENZIE D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Article  Google Scholar 

  • Moore WB, Lenardic A (2015) The efficiency of plate tectonics and nonequilibrium dynamical evolution of planetary mantles. Geophys Res Lett 42:9255–9260

    Article  Google Scholar 

  • Moore WB, Webb AAG (2013) Heat-pipe Earth. Nature 501:501–505

    Article  Google Scholar 

  • Moyen J-F, van Hunen J (2012) Short-term episodicity of Archaean plate tectonics. Geology 40:451–454

    Article  Google Scholar 

  • O’Neill C, Lenardic A, Moresi L et al (2007) Episodic Precambrian subduction. Earth Planet Sci Lett 262:552–562

    Article  Google Scholar 

  • O’Neill C, Marchi S, Zhang S, Bottke W (2017) Impact-driven subduction on the Hadean Earth. Nat Geosci 10:793–797

    Article  Google Scholar 

  • O’Reilly TC, Davies GF (1981) Magma transport of heat on Io: A mechanism allowing a thick lithosphere. Geophys Res Lett 8:313–316

    Article  Google Scholar 

  • Peters SI, Christensen PR, Clarke AB (2021) Lava flow eruption conditions in the Tharsis Volcanic Province on Mars. J Geophys Res Planets 126:e2020JE006791

    Article  Google Scholar 

  • Peterson GA, Johnson CL, Jellinek AM (2021) Thermal evolution of Mercury with a volcanic heat-pipe flux: reconciling early volcanism, tectonism, and magnetism. Sci Adv 7:eabh2482

    Article  Google Scholar 

  • Phillips RJ, Hansen VL (1994) Tectonic and magmatic evolution of Venus. Annu Rev Earth Planet Sci 22:597–656

    Article  Google Scholar 

  • Putirka K (2016) Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature. Am Miner 101:819–840. https://doi.org/10.1029/2005GC000915

    Article  Google Scholar 

  • Putirka KD (2005) Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochem Geophys Geosyst 6

  • Putirka KD (2009) A Consensus on Mantle Potential Temperatures? (Invited). In: AGU Fall Meeting Abstracts. pp V21F-01

  • Ruiz J (2014) The early heat loss evolution of Mars and their implications for internal and environmental history. Sci Rep 4:1–7

    Article  Google Scholar 

  • Schubert G, Cassen P, Young RE (1979) Subsolidus convective cooling histories of terrestrial planets. Icarus 38:192–211

    Article  Google Scholar 

  • Schubert G, Stevenson D, Cassen P (1980) Whole planet cooling and the radiogenic heat source contents of the Earth and Moon. J Geophys Res Solid Earth 85:2531–2538

    Article  Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  • Sharpe HN, Peltier WR (1978) Parameterized mantle convection and the Earth’s thermal history. Geophys Res Lett 5:737–740

    Article  Google Scholar 

  • Sharpe HN, Peltier WR (1979) A thermal history model for the Earth with parameterized convection. Geophys J Int 59:171–203

    Article  Google Scholar 

  • Sizova E, Gerya T, Brown M, Perchuk LL (2010) Subduction styles in the Precambrian: Insight from numerical experiments. Lithos 116:209–229

    Article  Google Scholar 

  • Sleep NH (2000) Evolution of the mode of convection within terrestrial planets. J Geophys Res Planets 105:17563–17578

    Article  Google Scholar 

  • Solomon SC, Smrekar SE, Bindschadler DL et al (1992) Venus tectonics: An overview of Magellan observations. J Geophys Res Planets 97:13199–13255

    Article  Google Scholar 

  • Solomon SC, Nittler LR, Anderson BJ (2018) Mercury: the view after MESSENGER. Cambridge University Press

  • Stacey FD, Davis PM (2008) Physics of the Earth. Cambridge University Press

    Book  Google Scholar 

  • Thomson W (1895) The age of the Earth. Nature 51:438–440

    Article  Google Scholar 

  • Tozer D (1965) Heat transfer and convection currents. Philos Trans R Soc Lond Ser A Math Phys Sci 258:252–271

    Google Scholar 

  • Tozer DC (1972) The present thermal state of the terrestrial planets. Phys Earth Planet Inter 6:182–197

    Article  Google Scholar 

  • Turcotte DL (1980) On the thermal evolution of the earth. Earth Planet Sci Lett 48:53–58

    Article  Google Scholar 

  • Turcotte DL, Oxburgh ER (1972) Mantle convection and the new global tectonics. Annu Rev Fluid Mech 4:33–66

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press

    Book  Google Scholar 

  • van Hunen J, Moyen J-F (2012) Archean subduction: fact or fiction? Annu Rev Earth Planet Sci 40:195–219

    Article  Google Scholar 

  • van Hunen J, van den Berg AP (2008) Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103:217–235

    Article  Google Scholar 

  • van Thienen P, van den Berg AP, Vlaar NJ (2004) Production and recycling of oceanic crust in the early Earth. Tectonophysics 386:41–65

    Article  Google Scholar 

  • van Thienen P, Vlaar NJ, van den Berg AP (2005) Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus. Phys Earth Planet Inter 150:287–315

    Article  Google Scholar 

  • Veeder GJ, Matson DL, Johnson TV et al (1994) Io’s heat flow from infrared radiometry: 1983–1993. J Geophys Res Planets 99:17095–17162

    Article  Google Scholar 

  • Werner SC (2009) The global martian volcanic evolutionary history. Icarus 201:44–68

    Article  Google Scholar 

  • Wilson L, Mouginis-Mark PJ, Tyson S et al (2009) Fissure eruptions in Tharsis, Mars: Implications for eruption conditions and magma sources. J Volcanol Geoth Res 185:28–46

    Article  Google Scholar 

  • Zhang Q, Zhu D, Du W, Liu Y (2022) A model of crust–mantle differentiation for the early Earth. Acta Geochim 41:689–703

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the strategic priority research program (B) of CAS (XDB41000000), Chinese NSF projects (42130114), and the pre-research Project on Civil Aerospace Technologies No. D020202 funded by the Chinese National Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingwen Zhang or Yun Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest. Yun Liu is Depyty Editor-in-Chief of Acta Geochimica. He was not involved in the journal’s review of, or decisions related to, this manuscript. The authors have no other competing interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Zhang, Q. & Liu, Y. The cooling models of Earth’s early mantle. Acta Geochim 42, 803–816 (2023). https://doi.org/10.1007/s11631-023-00617-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00617-7

Keywords

Navigation