Log in

Flame Synthesis of Zr/ZSM-5 Catalysts with Tunable Acidity for the Oxidative Dehydrogenation of Propane to Propene

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Tuning the surface acidity of ZSM-5 catalyst is essential to achieve desired propene selectivity and yield. Here several ratios of Zr were utilized to modify ZSM-5 via flame spray pyrolysis technique coupled with a pulse spray evaporation system. The interaction between Zr and ZSM-5 in the flame influenced the physicochemical and acidity properties of the Zr/ZSM-5. The increasing Zr ratio in ZSM-5 shows coated layers of irregular nano-sized Zr with an increase in crystallite sizes due to the synergetic effect between Zr and ZSM-5. The surface chemical analysis revealed increased lattice oxygen on the Zr modified ZSM-5 (1:4) sample compared to other catalysts. The acidity analysis revealed the Lewis and Brønsted acid distribution in the weak and medium acid sites on the catalyst surface. However, the increase in Zr loading decreased the concentration of Brønsted acid sites and tuned the catalyst surface to more Lewis acidity, promoting propene selectivity and hindering the over-oxidation of propene. The modified ZSM-5 catalysts were examined in a fixed bed reactor within 300–700°C at a gas hourly space velocity (GHSV) of 6000 mL·g(catalysts)−1·h−1 for the oxidative dehydrogenation of propane (ODHP) to propene. Among the catalysts, Zr/ZSM-5 (1:4) exhibited the best propene yield, with 57.19% propane conversion and 75.54% selectivity to propene and the highest stability. This work provides a promising strategy for tuning the surface acidity of ZSM-5 with Zr for ODHP applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otroshchenko T., Jiang G., Kondratenko V.A., Rodemerck U., Kondratenko E.V., Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chemical Society Reviews, 2001, 50: 473–527.

    Article  Google Scholar 

  2. Goyal R., Sarkar B., Bag A., Lefebvre F., Sameer S., Pendem C., Bordoloi A., Single-step synthesis of hierarchical BxCN: a metal-free catalyst for low-temperature oxidative dehydrogenation of propane. Journal of Materials Chemistry A, 2016, 4: 18559–18569.

    Article  Google Scholar 

  3. Reportlinker, Propylene Market Reports’Report, 2021.

  4. Global ethylene market data and industry growth analysis’ Report, 2020.

  5. Narasimharao K., Al-Sultan F.S., Y2O3 modified Au-La2O3 nanorod catalysts for oxidative cracking of n-propane. Fuel, 2020, 280: 118599.

    Article  Google Scholar 

  6. Chen S., Chang X., Sun G., Zhang T., Xu Y., Wang Y., Pei C., Gong J., Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chemical Society Reviews, 2021, 50: 3315–3354.

    Article  Google Scholar 

  7. Roldán L., Benito A.M., García-Bordejé E., Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. Journal of Materials Chemistry A, 2015, 3: 24379–24388.

    Article  Google Scholar 

  8. Fan X., Liu D., Zhao Z., Li J., Liu J., Influence of Ni/Mo ratio on the structure-performance of ordered mesoporous Ni-Mo-O catalysts for oxidative dehydrogenation of propane. Catalysis Today, 2020, 339 67–78.

    Article  Google Scholar 

  9. Lu W.-D., Wang D., Zhao Z., Song W., Li W.-C., Lu A.-H., Supported boron oxide catalysts for selective and low-temperature oxidative dehydrogenation of propane. ACS Catalysis, 2019 9: 8263–8270.

    Article  Google Scholar 

  10. Al-Ghamdi S.A., de Lasa H.I., Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2O3 catalyst. Fuel, 2014, 128: 120–140.

    Article  Google Scholar 

  11. Varzaneh A.Z., Moghaddam M.S., Darian J.T., Oxidative dehydrogenation of propane over vanadium catalyst supported on nano-HZSM-5. Petroleum Chemistry, 2018, 58: 13–21.

    Article  Google Scholar 

  12. Sazama P., Sathu N.K., Tabor E., Wichterlová B., Sklenák Š., Sobalík Z., Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition. Journal of Catalysis, 2013, 299: 188–203.

    Article  Google Scholar 

  13. Kubacka A., Włoch E., Sulikowski B., Valenzuela R.X., Cortés Corberán V., Oxidative dehydrogenation of propane on zeolite catalysts. Catalysis Today, 2000, 61: 343–352.

    Article  Google Scholar 

  14. Chaturbedy P., Ahamed M., Eswaramoorthy M., Oxidative dehydrogenation of propane over a high surface area boron nitride catalyst: Exceptional selectivity for olefins at high conversion. ACS Omega, 2018, 3: 369–374.

    Article  Google Scholar 

  15. Fonzeu Monguen C.K., El Kasmi A., Arshad M.F., Kouotou P.M., Daniel S., Tian Z.-Y., Oxidative dehydrogenation of propane into propene over chromium oxides. Industrial & Engineering Chemistry Research, 2022, 61: 4546–4560.

    Article  Google Scholar 

  16. Ates A., Hardacre C., Goguet A., Oxidative dehydrogenation of propane with N2O over Fe-ZSM-5 and Fe-SiO2: Influence of the iron species and acid sites. Applied Catalysis A: General, 2012, 441–442: 30–41.

    Article  Google Scholar 

  17. Qiu B., Jiang F., Lu W.-D., Yan B., Li W.-C., Zhao Z.-C., Lu A.-H., Oxidative dehydrogenation of propane using layered borosilicate zeolite as the active and selective catalyst. Journal of Catalysis, 2020, 385: 176–182.

    Article  Google Scholar 

  18. Zhang Y., Zhou Y., Huang L., Xue M., Zhang S., Sn-modified ZSM-5 as support for platinum catalyst in propane dehydrogenation. Industrial & Engineering Chemistry Research, 2011, 50: 7896–7902.

    Article  Google Scholar 

  19. Ren Y., Wang J., Hua W., Yue Y., Gao Z., Ga2O3/HZSM-48 for dehydrogenation of propane: Effect of acidity and pore geometry of support. Journal of Industrial and Engineering Chemistry, 2012, 18: 731–736.

    Article  Google Scholar 

  20. Tsoncheva T., Ivanova L., Paneva D., Mitov I., Minchev C., Fröba M., Cobalt and iron oxide modified mesoporous zirconia: Preparation, characterization and catalytic behaviour in methanol conversion. Microporous and Mesoporous Materials, 2009, 120: 389–396.

    Article  Google Scholar 

  21. Li H., Pokhrel S., Schowalter M., Rosenauer A., Kiefer J., Madler L., The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis. Combustion and Flame, 2020, 215: 389–400.

    Article  Google Scholar 

  22. Cordonnier N., Flame spray pyrolysis of Ce-Mn solid Solutions for catalytic applications, (Master’s thesis), 2019.

  23. Xanthopoulou G., Marinou A., Karanasios K., Vekinis G., Combustion synthesis during flame Spraying (“CAFSY”) for the production of catalysts on substrates. Coatings, 2017, 7: 14.

    Article  Google Scholar 

  24. Mädler L., Stark W., Pratsinis S., Flame-made ceria nanoparticles. Journal of Materials Research, 2002, 17: 1356–1362.

    Article  ADS  Google Scholar 

  25. Chen Z., Xu Z., Zhao H., Flame spray pyrolysis synthesis and H2S sensing properties of CuO-doped SnO2 nanoparticles. Proceedings of the Combustion Institute, 2021, 38: 6743–6751.

    Article  Google Scholar 

  26. Ren Y., Zhang F., Hua W., Yue Y., Gao Z., ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2. Catalysis Today, 2009, 148: 316–322.

    Article  Google Scholar 

  27. Berger F., Rybicki M., Sauer J., Adsorption and cracking of propane by zeolites of different pore size. Journal of Catalysis, 2021, 395: 117–128.

    Article  Google Scholar 

  28. Momayez F., Towfighi Darian J., Teimouri Sendesi S.M., Synthesis of zirconium and cerium over HZSM-5 catalysts for light olefins production from naphtha. Journal of Analytical and Applied Pyrolysis, 2015, 112: 135–140.

    Article  Google Scholar 

  29. Hu Z.P., Wang Y., Yang D., Yuan Z.Y., CrOx supported on high-silica HZSM-5 for propane dehydrogenation. Journal of Energy Chemistry, 2020, 47: 225–233.

    Article  Google Scholar 

  30. Kusampally U., Dhachapally N., Kola R., Kamatala C.R., Zeolite anchored Zr-ZSM-5 as an eco-friendly, green, and reusable catalyst in Hantzsch synthesis of dihydropyridine derivatives. Materials Chemistry and Physics, 2020, 242: 122497.

    Article  Google Scholar 

  31. Li S., Hao Q., Zhao R., Liu D., Duan H., Dou B., Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts. Chemical Engineering Journal, 2016, 285: 536–543.

    Article  Google Scholar 

  32. Lv G., Bin F., Song C., Wang K., Song J., Promoting effect of zirconium do** on Mn/ZSM-5 for the selective catalytic reduction of NO with NH3. Fuel, 2013, 107: 217–224.

    Article  Google Scholar 

  33. Peng C., Yan R., Peng H., Mi Y., Liang J., Liu W., Wang X., Song G., Wu P., Liu F., One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures. Journal of Hazardrous Materials, 2020, 385: 121593.

    Article  Google Scholar 

  34. Xu B., Li T., Zheng B., Hua W., Yue Y., Gao Z., Enhanced stability of HZSM-5 supported Ga2O3 catalyst in propane dehydrogenation by dealumination. Catalysis Letters, 2007, 119: 283–288.

    Article  Google Scholar 

  35. Faro J.A.C., Souza K.R., Eon J.G., Leitão A.A., Rocha A.B., Capaz R.B., Mixed-oxide formation during preparation of alumina-supported zirconia: an EXAFS and DFT study. Physical Chemistry Chemical Physics, 2003, 5: 3811–3817.

    Article  Google Scholar 

  36. Emeis C.A., Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of Catalysis, 1993, 141: 347–354.

    Article  Google Scholar 

  37. Petit S., Morlens S., Yu Z., Luneau D., Pilet G., Soubeyroux J.-L., Odier P., Synthesis and thermal decomposition of a novel zirconium acetato-propionate cluster: [Zr12]. Solid State Sciences, 2011, 13: 665–670.

    Article  ADS  Google Scholar 

  38. Tallon J.L., Buckley R.G., Thermal decomposition of the zeolite catalyst ZSM-5. The Journal of Physical Chemistry, 2002, 91: 1469–1475.

    Article  Google Scholar 

  39. Zhang D., Wang R., Yang X., Effect of P content on the catalytic performance of P-modified HZSM-5 catalysts in dehydration of ethanol to ethylene. Catalysis Letters, 2008, 124: 384–391.

    Article  Google Scholar 

  40. Song Z., Takahashi A., Nakamura I., Fujitani T., Phosphorus-modified ZSM-5 for conversion of ethanol to propylene. Applied Catalysis A: General, 2010, 384: 201–205.

    Article  Google Scholar 

  41. Fei Z.Y., Sun B., Zhao L., Ji W.J., Au C.T., Strong morphological effect of Mn3O4 nanocrystallites on the catalytic activity of Mn3O4 and Au/Mn3O4 in benzene combustion. Chemistry, 2013, 19: 6480–6487.

    Article  Google Scholar 

  42. Tian Z.-Y., Mountapmbeme Kouotou P., Bahlawane N., Tchoua Ngamou P.H., Synthesis of the catalytically active Mn3O4 spinel and its thermal properties. The Journal of Physical Chemistry C, 2013, 117: 6218–6224.

    Article  Google Scholar 

  43. Daniel S., Monguen C.K.F., El Kasmi A., Arshad M.F., Tian Z.-Y., Oxidative Dehydrogenation of Propane to Olefins Promoted by Zr Modified ZSM-5. Catalysis Letters, 2023, 153: 285–299.

    Article  Google Scholar 

  44. Zhang Y., Zhao Y., Otroshchenko T., Han S., Lund H., Rodemerck U., Linke D., Jiao H., Jiang G., Kondratenko E.V., The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation. Journal of Catalysis, 2019, 371: 313–324.

    Article  Google Scholar 

  45. Al-Sultan F.S., Basahel S.N., Narasimharao K., Yttrium oxide supported La2O3 nanomaterials for catalytic oxidative cracking of n-propane to olefins. Catalysis Letters, 2019, 150: 185–195.

    Article  Google Scholar 

  46. Zhang F., Wu R., Yue Y., Yang W., Gu S., Miao C., Hua W., Gao Z., Chromium oxide supported on ZSM-5 as a novel efficient catalyst for dehydrogenation of propane with CO2. Microporous and Mesoporous Materials, 2011, 145: 194–199.

    Article  ADS  Google Scholar 

  47. Kasmi A.E., Vieker H., Wu L.-N., Beyer A., Chafik T., Tian Z.-Y., Enhanced property of thin cuprous oxide film prepared through green synthetic route. Chinese Journal of Chemical Physics, 2019, 32: 365–372.

    Article  ADS  Google Scholar 

  48. Chastain J., King Jr R.C., Handbook of X-ray photoelectron spectroscopy. Journal of Perkin-Elmer Corporation, 1992, 40: 221.

    Google Scholar 

  49. Rayner G.B., Kang D., Zhang Y., Lucovsky G., Nonlinear composition dependence of x-ray photoelectron spectroscopy and Auger electron spectroscopy features in plasma-deposited zirconium silicate alloy thin films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2002, 20: 1748–1758.

    Article  ADS  Google Scholar 

  50. Peng D.Q., Bai X.D., Chen B.S., Corrosion behavior of carbon implanted ZIRLO alloy in 1 M H2SO4. Journal of Materials Science, 2005, 40: 1169–1175.

    Article  ADS  Google Scholar 

  51. Tian Z.-Y., Mountapmbeme Kouotou P., El Kasmi A., Tchoua Ngamou P.H., Kohse-Höinghaus K., Vieker H., Beyer A., Gölzhäuser A., Low-temperature deep oxidation of olefins and DME over cobalt ferrite. Proceedings of the Combustion Institute, 2015, 35: 2207–2214.

    Article  Google Scholar 

  52. Ojeda M., Osterman N., Dražić G., FeleŽilnik L., Meden A., Kwapinski W., Balu A.M., Likozar B., Novak Tušar N., Conversion of palmitic acid over bi-functional Ni/ZSM-5 catalyst: Effect of stoichiometric Ni/Al molar ratio. Topics in Catalysis, 2018, 61: 1757–1768.

    Article  Google Scholar 

  53. Fukudome K., Ikenaga N.-o., Miyake T., Suzuki T., Technology, Oxidative dehydrogenation of propane using lattice oxygen of vanadium oxides on silica. Journal of Catalysis Science, 2011, 1: 987–998.

    Google Scholar 

  54. Hossain M.M., Kinetics of oxidative dehydrogenation of propane to propylene using lattice oxygen of VO x/CaO/γAl2O3 catalysts. Journal of Industrial Engineering Chemistry Research, 2017, 56: 4309–4318.

    Article  Google Scholar 

  55. Kim T.H., Kang K.H., Baek M., Song J.H., Hong U.G., Park D.S., Choi W.C., Park Y.-K., Song I.K., Dehydrogenation of propane to propylene with lattice oxygen over CrOy /Al2O3-ZrO2 catalysts. Molecular Catalysis, 2017, 433: 1–7.

    Article  Google Scholar 

  56. Lin L., Qiu C., Zhuo Z., Zhang D., Zhao S., Wu H., Liu Y., He M., Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. Journal of Catalysis, 2014, 309: 136–145.

    Article  Google Scholar 

  57. Zhang N., Mao D., Zhai X., Selective conversion of bio-ethanol to propene over nano-HZSM-5 zeolite: Remarkably enhanced catalytic performance by fluorine modification. Fuel Processing Technology, 2017, 167: 50–60.

    Article  Google Scholar 

  58. Yang H., Ma C., Wang G., Sun Y., Cheng J., Zhang Z., Zhang X., Hao Z., Fluorine-enhanced Pt/ZSM-5 catalysts for low-temperature oxidation of ethylene. Catalysis Science & Technology, 2018, 8: 1988–1996.

    Article  Google Scholar 

  59. Ayodele O.B., Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels. Scientific Reports, 2017, 7: 10008.

    Article  ADS  Google Scholar 

  60. Ayodele O.B., Togunwa O.S., Catalytic activity of copper modified bentonite supported ferrioxalate on the aqueous degradation and kinetics of mineralization of Direct Blue 71, Acid Green 25 and Reactive Blue 4 in photo-Fenton process. Applied Catalysis A: General, 2014, 470: 285–293.

    Article  Google Scholar 

  61. Xu T., Zhang Q., Song H., Wang Y., Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides. Journal of Catalysis, 2012, 295: 232–241.

    Article  Google Scholar 

  62. Tian Z., Bahlawane N., Qi F., Kohse-Höinghaus K., Catalytic oxidation of hydrocarbons over Co3O4 catalyst prepared by CVD. Catalysis Communications, 2009, 11: 118–122.

    Article  Google Scholar 

  63. Farsad A., Lawson S., Rezaei F., Rownaghi A.A., Oxidative dehydrogenation of propane over 3D printed mixed metal oxides/H-ZSM-5 monolithic catalysts using CO2 as an oxidant. Catalysis Today, 2021, 374: 173–184.

    Article  Google Scholar 

  64. Zhang Y., Zhou Y., Qiu A., Wang Y., Xu Y., Wu P., Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter. Catalysis Communications, 2006, 7: 860–866.

    Article  Google Scholar 

  65. Hu Z.-P., Wang Y., Yang D., Yuan Z.-Y., CrOx supported on high-silica HZSM-5 for propane dehydrogenation. Journal of Energy Chemistry, 2020, 47: 225–233.

    Article  Google Scholar 

  66. Ren Y., Zhang F., Hua W., Yue Y., Gao Z., ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2. Catalysis Today, 2009, 148: 316–322.

    Article  Google Scholar 

  67. Tian J., Tan J., Xu M., Zhang Z., Wan S., Wang S., Lin J., Wang Y., Propane oxidative dehydrogenation over highly selective hexagonal boron nitride catalysts: The role of oxidative coupling of methyl. Science Advances, 2019, 5: eaav8063.

    Article  ADS  Google Scholar 

  68. Sandupatla A.S., Ray K., Thaosen P., Sivananda C., Deo G., Oxidative dehydrogenation of propane over alumina supported vanadia catalyst - Effect of carbon dioxide and secondary surface metal oxide additive. Catalysis Today, 2020, 354: 176–182.

    Article  Google Scholar 

Download references

Acknowledgement

TIAN Zhenyu thanks the financial support from the National Natural Science Foundation of China (No. 52161145105/51888103/51976216), Ministry of Science and Technology of China (2017YFA0402800), Bei**g Municipal Natural Science Foundation (JQ20017), K.C. Wong Education Foundation (GJTD-2020-07), and Recruitment of Global Youth Experts. SAMUEL Daniel thanks the financial support of the Belt and Road scholarship. CEDRIC KAREL Fonzeu Monguen kindly acknowledges the financial support of the ANSO scholarship. WU Lingnan is very grateful for the support of the Chinese Academy of Sciences for the CAS project (Grant No. 2018/43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Tian.

Ethics declarations

TIAN Zhenyu is an editorial board member for Journal of Thermal Science and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, S., Fonzeu Monguen, C.K., Wu, L. et al. Flame Synthesis of Zr/ZSM-5 Catalysts with Tunable Acidity for the Oxidative Dehydrogenation of Propane to Propene. J. Therm. Sci. 33, 268–283 (2024). https://doi.org/10.1007/s11630-023-1873-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1873-0

Keywords

Navigation