Log in

Conversion of Palmitic Acid Over Bi-functional Ni/ZSM-5 Catalyst: Effect of Stoichiometric Ni/Al Molar Ratio

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The conversion of the biomass-derived lipid, lignocellulosic and carbohydrate resources into renewable platform intermediates, chemicals and biofuels has been lately increasing in interest. The mechanistic reaction pathways, like hydro-deoxygenation, decarboxylation and hydrocracking, of the selected palmitic acid, as a model fatty acid, over Ni/ZSM-5 zeolite catalysts were studied. The ZSM-5 material with different Al/Si molar ratios was synthesized via a green template-free hydrothermal synthesis procedure, treated and subsequent functionalised with various Ni metal loadings. However, Ni/Al molar ratio was kept stoichiometric (Ni/Al = 0.5). The characteristic physicochemical properties of composite catalysts were studied by numerous characterization techniques, such as X-ray powder diffraction (XRD), scanning-, as well as high-resolution transmission electron microscopy (SEM/HRTEM), and X-ray photoelectron spectroscopy (XPS). NiO with an average particle size of 10–20 nm was found on ZSM-5 support. The relative Ni/Al atom fraction in Ni/ZSM-5 systems influenced their Lewis/Brønsted acidic sites, as well as the external exposed area of prepared heterogeneous structures. Furthermore, the mentioned morphological parameters affected predominant catalytic routes. Species’ production mechanism, as a consequence of Lewis/Brønsted centre weak/strong acidity, as well as their integral concentration, was proposed, mirroring the observed process kinetics, selectivity and turnover. It was demonstrated that the main obtained products were esters, aldehydes, alcohols, hydrocarbons and gases (CO2, CO…), produced by deoxygenation (e.g. decarbonylation), hydrogenation and cracking, less, though, through isomerisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Yang Y, Ochoa-Hernández C, de la Peña VA, O’Shea JM, Coronado, Serrano DP (2012) ACS Catal 2:592–598

    Article  CAS  Google Scholar 

  2. Li S, Wang Y, Dong S, Chen Y, Cao F, Chai F, Wang X (2009) Renewable Energy 34:1871–1876

    Article  CAS  Google Scholar 

  3. Arend M, Nonnen T, Hoelderich WF, Fischer J, Groos J (2011) Appl Catal A 399:198–204

    Article  CAS  Google Scholar 

  4. Asomaning J, Mussone P, Bressler DC (2014) Fuel Process Technol 120:89–95

    Article  CAS  Google Scholar 

  5. Doronin VP, Potapenko OV, Lipin PV, Sorokina TP (2013) Fuel 106:757–765

    Article  CAS  Google Scholar 

  6. Yang Y, Wang Q, Zhang X, Wang L, Li G (2013) Fuel Process Technol 116:165–174

    Article  CAS  Google Scholar 

  7. Srifa A, Faungnawakij K, Itthibenchapong V, Viriya-empikul N, Charinpanitkul T, Assabumrungrat S (2014) Bioresour Technol 158:81–90

    Article  CAS  Google Scholar 

  8. Pinto F, Varela FT, Gonçalves M, Neto R, André P, Costa, Mendes B (2014) Fuel 116:84–93

    Article  CAS  Google Scholar 

  9. Feyzi M, Khajavi G (2014) Ind Crop Prod 58:298–304

    Article  CAS  Google Scholar 

  10. Roh H-S, Eum I-H, Jeong D-W, Yi BE, Na J-G, Ko CH (2011) Catal Today 164:457–460

    Article  CAS  Google Scholar 

  11. Madsen AT, Rozmysłowicz B, Simakova IL, Kilpiö T, Leino A-R, Kordás KN, Eränen K, Mäki-Arvela PI, Murzin DY (2011) Ind Eng Chem Res 50:11049–11058

    Article  CAS  Google Scholar 

  12. Mäki-Arvela P, Kubickova I, Snåre M, Eränen K, Murzin DY (2006) Energy Fuels 21:30–41

    Article  CAS  Google Scholar 

  13. Snåre M, Kubičková I, Mäki-Arvela P, Eränen K, Murzin DY (2006) Ind Eng Chem Res 45:5708–5715

    Article  CAS  Google Scholar 

  14. Morgan T, Grubb D, Santillan-Jimenez E, Crocker M (2010) Top Catal 53:820–829

    Article  CAS  Google Scholar 

  15. Hermida L, Abdullah AZ, Mohamed AR (2013) Mater Sci Appl 4:52–62

    CAS  Google Scholar 

  16. Botas JA, Serrano DP, García A, de Vicente J, Ramos R (2012) Catal Today 195:59–70

    Article  CAS  Google Scholar 

  17. Peng B, Zhao C, Kasakov S, Foraita S, Lercher JA (2013) Chem Eur J 19:4732–4741

    Article  CAS  Google Scholar 

  18. Vieira SS, Magriotis ZM, Ribeiro MF, Graça I, Fernandes A, Lopes JMFM, Coelho SM, Santos NAV, Saczk AA (2015) Microporous Mesoporous Mater 201:160–168

    Article  CAS  Google Scholar 

  19. Chouhan APS, Sarma AK (2011) Renew Sustain Energy Rev 15:4378–4399

    Article  CAS  Google Scholar 

  20. Shi Y, **ng E, Cao Y, Liu M, Wu K, Yang M, Wu Y (2017) Chem Eng Sci 166:262–273

    Article  CAS  Google Scholar 

  21. Perea DE, Arslan I, Liu J, Ristanović Z, Kovarik L, Arey BW, Lercher JA, Bare SR, Weckhuysen BM (2015) Nature Commun 6:7589

    Article  Google Scholar 

  22. Saravanan K, Tyagi B, Shukla RS, Bajaj HC (2015) Appl Catal B 172–173:108–115

    Article  CAS  Google Scholar 

  23. Carmo AC, de Souza LKC, da Costa CEF, Longo E, Zamian JR, da Rocha Filho GN (2009) Fuel 88:461–468

    Article  CAS  Google Scholar 

  24. Gui MM, Lee KT, Bhatia S (2008) Energy 33:1646–1653

    Article  CAS  Google Scholar 

  25. Cihanoğlu A, Gündüz G, Dükkancı M (2015) Appl Catal B 165:687–699

    Article  CAS  Google Scholar 

  26. Qin Z, Lakiss L, Tosheva L, Gilson J-P, Vicente A, Fernandez C, Valtchev V (2014) Adv Funct Mater 24:257–264

    Article  CAS  Google Scholar 

  27. Gavrilov VY, Krivoruchko OP, Larina TV, Molina IY, Shutilov RA (2010) Kinet Catal 51:88–97

    Article  CAS  Google Scholar 

  28. Baran R, Śrębowata A, Kamińska II, Łomot D, Dzwigaj S (2013) Microporous Mesoporous Mater 180:209–218

    Article  CAS  Google Scholar 

  29. Bendezú S, Cid R, Fierro JLG, López A, Agudo (2000) Appl Catal A 197:47–60

    Article  Google Scholar 

  30. Masalska A, Grzechowiak JR, Jaroszewska K (2013) Top Catal 56:981–994

    Article  CAS  Google Scholar 

  31. **ao S, Meng Z (1994) J Chem Soc Faraday Trans 90:2591–2595

    Article  CAS  Google Scholar 

  32. Zieliński J (1982) J Catal 76:157–163

    Article  Google Scholar 

  33. Fakin T, Ristić A, Mavrodinova V, Zabukovec N, Logar (2015) Microporous Mesoporous Mater 213:108–117

    Article  CAS  Google Scholar 

  34. Yuan HX, **a QH, Zhan HJ, Lu XH, Su KX (2006) Appl Catal A 304:178–184

    Article  CAS  Google Scholar 

  35. Wang J-Y, Zhao F-Y, Liu R-J, Hu Y-Q (2008) J Mol Catal A 279:153–158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Slovenian Research Agency (ARRS) (Programs P1-0021, P2-0152, P2-0393), EU COST Action TD1203 and EU COST Action FP1306. Dr. Matjaž Mazaj and Mojca Opresnik from National Institute of Chemistry performed preliminary TEM characterization and nitrogen physisorption measurements, respectively. XPS and acidity characterization were performed at University of Cordoba in Spain. Catalytic tests were performed by James J Leachy at University of Limerick in Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Novak Tušar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojeda, M., Osterman, N., Dražić, G. et al. Conversion of Palmitic Acid Over Bi-functional Ni/ZSM-5 Catalyst: Effect of Stoichiometric Ni/Al Molar Ratio. Top Catal 61, 1757–1768 (2018). https://doi.org/10.1007/s11244-018-1046-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1046-7

Keywords

Navigation